Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pgvector fixes #660

Merged
merged 10 commits into from
Oct 23, 2024
32 changes: 10 additions & 22 deletions src/vanna/pgvector/pgvector.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,20 +28,20 @@ def __init__(self, config=None):
if config and "embedding_function" in config:
self.embedding_function = config.get("embedding_function")
else:
from sentence_transformers import SentenceTransformer
self.embedding_function = SentenceTransformer("sentence-transformers/all-MiniLM-l6-v2")
from langchain_huggingface import HuggingFaceEmbeddings
self.embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

self.sql_vectorstore = PGVector(
self.sql_collection = PGVector(
embeddings=self.embedding_function,
collection_name="sql",
connection=self.connection_string,
)
self.ddl_vectorstore = PGVector(
self.ddl_collection = PGVector(
embeddings=self.embedding_function,
collection_name="ddl",
connection=self.connection_string,
)
self.documentation_vectorstore = PGVector(
self.documentation_collection = PGVector(
embeddings=self.embedding_function,
collection_name="documentation",
connection=self.connection_string,
Expand Down Expand Up @@ -94,16 +94,16 @@ def get_collection(self, collection_name):
case _:
raise ValueError("Specified collection does not exist.")

async def get_similar_question_sql(self, question: str) -> list:
def get_similar_question_sql(self, question: str) -> list:
documents = self.sql_collection.similarity_search(query=question, k=self.n_results)
return [ast.literal_eval(document.page_content) for document in documents]

async def get_related_ddl(self, question: str, **kwargs) -> list:
documents = await self.ddl_collection.similarity_search(query=question, k=self.n_results)
def get_related_ddl(self, question: str, **kwargs) -> list:
documents = self.ddl_collection.similarity_search(query=question, k=self.n_results)
return [document.page_content for document in documents]

async def get_related_documentation(self, question: str, **kwargs) -> list:
documents = await self.documentation_collection.similarity_search(query=question, k=self.n_results)
def get_related_documentation(self, question: str, **kwargs) -> list:
documents = self.documentation_collection.similarity_search(query=question, k=self.n_results)
return [document.page_content for document in documents]

def train(
Expand Down Expand Up @@ -251,15 +251,3 @@ def remove_collection(self, collection_name: str) -> bool:

def generate_embedding(self, *args, **kwargs):
pass

def submit_prompt(self, *args, **kwargs):
edlouth marked this conversation as resolved.
Show resolved Hide resolved
pass

def system_message(self, message: str) -> any:
return {"role": "system", "content": message}

def user_message(self, message: str) -> any:
return {"role": "user", "content": message}

def assistant_message(self, message: str) -> any:
return {"role": "assistant", "content": message}
39 changes: 34 additions & 5 deletions tests/test_pgvector.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,22 +3,51 @@
from dotenv import load_dotenv

from vanna.pgvector import PG_VectorStore
from vanna.openai import OpenAI_Chat


# assume .env file placed next to file with provided env vars
load_dotenv()


def get_vanna_connection_string():
server = os.environ.get("PG_SERVER")
driver = "psycopg"
port = 5434
port = os.environ.get("PG_PORT", 5432)
database = os.environ.get("PG_DATABASE")
username = os.environ.get("PG_USERNAME")
password = os.environ.get("PG_PASSWORD")

return f"postgresql+psycopg://{username}:{password}@{server}:{port}/{database}"


def test_pgvector():
connection_string = get_vanna_connection_string()
pgclient = PG_VectorStore(config={"connection_string": connection_string})
assert pgclient is not None
def test_pgvector_e2e():
# configure Vanna to use OpenAI and PGVector
class VannaCustom(PG_VectorStore, OpenAI_Chat):
def __init__(self, config=None):
PG_VectorStore.__init__(self, config=config)
OpenAI_Chat.__init__(self, config=config)

vn = VannaCustom(config={
'api_key': os.environ['OPENAI_API_KEY'],
'model': 'gpt-3.5-turbo',
"connection_string": get_vanna_connection_string(),
})

# connect to SQLite database
vn.connect_to_sqlite('https://vanna.ai/Chinook.sqlite')

# train Vanna on DDLs
df_ddl = vn.run_sql("SELECT type, sql FROM sqlite_master WHERE sql is not null")
for ddl in df_ddl['sql'].to_list():
vn.train(ddl=ddl)
assert len(vn.get_related_ddl("dummy question")) == 10 # assume 10 DDL chunks are retrieved by default

question = "What are the top 7 customers by sales?"
sql = vn.generate_sql(question)
df = vn.run_sql(sql)
assert len(df) == 7

# test if Vanna can generate an answer
answer = vn.ask(question)
assert answer is not None