Deep learning models applied to EEG signals on tensorflow 2.x
Name | Subjects | fs[Hz] | Classes |
---|---|---|---|
BCI2a | 9 | 250 | Left hand / Right hand / Feet / Toungue |
GIGA17 | 52 | 500 | Left hand / Right hand |
- DeepConvNet: Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization.
- ShallowConvNet: Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization.
- EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces.
- DMTL_BCI: EEG-Based Motor Imagery Classification with Deep Multi-Task Learning.
- PST-Attention: Parallel Spatial–Temporal Self-Attention CNN-Based Motor Imagery Classification for BCI.
- TCNet-Fusion: Electroencephalography-based motor imagery classification using temporal convolutional network fusion.
- MTVAE: Multi-task variational autoencoder.
- ShallowConvNet_1Conv2d: Variation of ShallowConvNet with only a convolutional 2D layer.
- ShallowConvNet_1Conv2d_rff: : Variation of ShallowConvNet_1Conv2D using Random Fourier Features layer.
- Deep&Wide Learning using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills
- CNN_DW_ITL
- Preprocessing_MI
- Clone this repo.
git clone https://github.com/UN-GCPDS/python-gcpds.EEG_Tensorflow_models
- Install repo.
On personal laptop
pip install -e git+https://github.com/UN-GCPDS/python-gcpds.EEG_Tensorflow_models.git#egg=EEG_Tensorflow_models
On Google Colab
pip install -U git+https://github.com/UN-GCPDS/python-gcpds.EEG_Tensorflow_models.git