Skip to content

Latest commit

 

History

History
52 lines (40 loc) · 3.34 KB

File metadata and controls

52 lines (40 loc) · 3.34 KB

python-gcpds.EEG_Tensorflow_models

Deep learning models applied to EEG signals on tensorflow 2.x

Datasets

Name Subjects fs[Hz] Classes
BCI2a 9 250 Left hand / Right hand / Feet / Toungue
GIGA17 52 500 Left hand / Right hand

State-of-the-art methods

  • DeepConvNet: Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization.
  • ShallowConvNet: Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization.
  • EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces.
  • DMTL_BCI: EEG-Based Motor Imagery Classification with Deep Multi-Task Learning.
  • PST-Attention: Parallel Spatial–Temporal Self-Attention CNN-Based Motor Imagery Classification for BCI.
  • TCNet-Fusion: Electroencephalography-based motor imagery classification using temporal convolutional network fusion.

Proposed approaches

Install

  1. Clone this repo.
git clone https://github.com/UN-GCPDS/python-gcpds.EEG_Tensorflow_models
  1. Install repo.

On personal laptop

pip install -e git+https://github.com/UN-GCPDS/python-gcpds.EEG_Tensorflow_models.git#egg=EEG_Tensorflow_models

On Google Colab

pip install -U git+https://github.com/UN-GCPDS/python-gcpds.EEG_Tensorflow_models.git

Results

  • BCI2a:

  • GIGA17: