Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Weaviate guide - code and examples #1365

Merged
merged 29 commits into from
Aug 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
6bb9a3d
first input - tf and basic helm manifest
BRV158 Jun 18, 2024
257cf2b
weaviate values updated with authentification
BRV158 Jun 20, 2024
6051f8b
comments cleared out
BRV158 Jun 20, 2024
db82520
notebook added
BRV158 Jun 21, 2024
9fac6fc
notebook and jupiter edited
BRV158 Jun 21, 2024
d38da2f
notebook update
BRV158 Jun 23, 2024
321b7c5
updates
ganochenkodg Jun 25, 2024
0c01a9f
update jupyter yaml
ganochenkodg Jun 25, 2024
9acc63e
updates
ganochenkodg Jun 27, 2024
cb78ec0
updates
ganochenkodg Jun 27, 2024
033eff6
add dashboard
ganochenkodg Jun 27, 2024
d9987b3
manifests tagged
BRV158 Jul 1, 2024
d2ae9e6
end endpoint envs
ganochenkodg Jul 1, 2024
c36d2b6
update tf, add dockerfiles
ganochenkodg Jul 1, 2024
945868b
Merge branch 'GoogleCloudPlatform:main' into Weaviate
ganochenkodg Jul 1, 2024
3e4f4f9
update the code
ganochenkodg Jul 1, 2024
24e7f0c
small update
ganochenkodg Jul 2, 2024
61a11d5
update chatbot.py
ganochenkodg Jul 2, 2024
1952081
docker updates
ganochenkodg Jul 2, 2024
5d588fa
Merge branch 'GoogleCloudPlatform:main' into Weaviate
ganochenkodg Jul 4, 2024
579f00a
update notebook, remove jupyter
ganochenkodg Jul 9, 2024
c011551
Merge branch 'main' into Weaviate
ganochenkodg Jul 10, 2024
6d4186a
update notebook
ganochenkodg Jul 12, 2024
4a1b8d6
add ilb
ganochenkodg Jul 16, 2024
cc677d4
Merge branch 'main' into Weaviate
ganochenkodg Jul 25, 2024
49e85ba
fix the header
ganochenkodg Jul 25, 2024
7bdf991
Merge branch 'main' into Weaviate
ganochenkodg Aug 6, 2024
583050c
add ci step
ganochenkodg Aug 6, 2024
f578917
ci quickfix
ganochenkodg Aug 6, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 50 additions & 0 deletions .github/workflows/databases-weaviate-ci.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

name: databases-weaviate-ci.yml
on:
push:
branches:
- main
paths:
- '.github/workflows/databases-weaviate-ci.yml'
- 'databases/weaviate/**'
pull_request:
paths:
- '.github/workflows/databases-weaviate-ci.yml'
- 'databases/weaviate/**'
jobs:
job:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v4
- name: Validate GKE Standard TF for Weaviate
run: |
cd databases/weaviate/terraform/gke-standard
terraform init
terraform validate
- name: Validate GKE Autopilot TF for Weaviate
run: |
cd databases/weaviate/terraform/gke-autopilot
terraform init
terraform validate
- name: Build chatbot app container
run: |
cd databases/weaviate/docker/chatbot
docker build --tag chatbot:1.0 .
- name: Build docs embedder container
run: |
cd databases/weaviate/docker/embed-docs
docker build --tag embed-docs:1.0 .

16 changes: 16 additions & 0 deletions databases/weaviate/docker/chatbot/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
FROM python:3.12-slim-bookworm
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you create a new workflow for this weaviate samples, that has 4 steps:

  • 2x docker build steps for the two containers
  • 2x terraform validate steps for the two terraform directories

You can find an example here: https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/main/.github/workflows/cost-optimization-gke-vpa-recommendations-ci.yml

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yep, sure, will add

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done


ENV WEAVIATE_ENDPOINT weaviate.weaviate
ENV WEAVIATE_GRPC_ENDPOINT weaviate-grpc.weaviate

RUN apt update && \
apt install -y --no-install-recommends gcc libc6-dev && \
rm -rf /var/lib/apt/lists/*
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
COPY . .

CMD ["run","/app/chat.py"]
ENTRYPOINT ["streamlit"]

114 changes: 114 additions & 0 deletions databases/weaviate/docker/chatbot/chat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
import weaviate
from weaviate.connect import ConnectionParams
from langchain_weaviate.vectorstores import WeaviateVectorStore
import streamlit as st
import os

# [START gke_databases_weaviate_docker_chat_model]
vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
("human", """
The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
Base your response on the provided text context and the current conversation history to answer the query.
Select the most relevant information from the context.
Generate a draft response using the selected information. Remove duplicate content from the draft response.
Generate your final response after adjusting it to increase accuracy and relevance.
Now only show your final response!
If you do not know the answer or context is not relevant, response with "I don't know".

text_context:
{context}

conversation_history:
{history}

query:
{query}
"""),
]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")
# [END gke_databases_weaviate_docker_chat_model]

# [START gke_databases_weaviate_docker_chat_client]
auth_config = weaviate.auth.AuthApiKey(api_key=os.getenv("APIKEY"))
client = weaviate.WeaviateClient(
connection_params=ConnectionParams.from_params(
http_host=os.getenv("WEAVIATE_ENDPOINT"),
http_port="80",
http_secure=False,
grpc_host=os.getenv("WEAVIATE_GRPC_ENDPOINT"),
grpc_port="50051",
grpc_secure=False,
),
auth_client_secret=auth_config
)
client.connect()

vector_search = WeaviateVectorStore.from_documents([],embedding_model,client=client, index_name="trainingdocs")
# [END gke_databases_weaviate_docker_chat_client]

def format_docs(docs):
return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]

# [START gke_databases_weaviate_docker_chat_session]
if "memory" not in st.session_state:
st.session_state["memory"] = ConversationBufferWindowMemory(
memory_key="history",
ai_prefix="Bot",
human_prefix="User",
k=3,
)
# [END gke_databases_weaviate_docker_chat_session]

# [START gke_databases_weaviate_docker_chat_history]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# [END gke_databases_weaviate_docker_chat_history]

if chat_input := st.chat_input():
with st.chat_message("human"):
st.write(chat_input)
st.session_state.messages.append({"role": "human", "content": chat_input})

found_docs = vector_search.similarity_search(chat_input)
context = format_docs(found_docs)

prompt_value = prompt_template.format_messages(name="Bot", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
with st.chat_message("ai"):
with st.spinner("Typing..."):
content = ""
with st.empty():
for chunk in vertexAI.stream(prompt_value):
content += chunk.content
st.write(content)
st.session_state.messages.append({"role": "ai", "content": content})

st.session_state.memory.save_context({"input": chat_input}, {"output": content})

9 changes: 9 additions & 0 deletions databases/weaviate/docker/chatbot/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
streamlit==1.34.0
google-cloud-aiplatform==1.51.0
langchain==0.1.20
langchain-community==0.0.38
langchain-google-vertexai==0.1.3
langchain-weaviate==0.0.2
weaviate-client==4.6.5
arxiv==2.1.0
pymupdf==1.24.3
18 changes: 18 additions & 0 deletions databases/weaviate/docker/embed-docs/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
FROM python:3.12-slim-bookworm

ENV WEAVIATE_ENDPOINT weaviate.weaviate
ENV WEAVIATE_GRPC_ENDPOINT weaviate-grpc.weaviate

RUN apt update && \
apt install -y --no-install-recommends gcc libc6-dev && \
rm -rf /var/lib/apt/lists/*
RUN mkdir -p /documents
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
RUN chmod 765 endpoint.py
EXPOSE 5001

CMD ["/app/embedding-job.py"]
ENTRYPOINT ["python"]
64 changes: 64 additions & 0 deletions databases/weaviate/docker/embed-docs/embedding-job.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import VertexAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import weaviate
from weaviate.connect import ConnectionParams
from langchain_weaviate.vectorstores import WeaviateVectorStore
from google.cloud import storage
import os
# [START gke_databases_weaviate_docker_embed_docs_retrieval]
bucketname = os.getenv("BUCKET_NAME")
filename = os.getenv("FILE_NAME")

storage_client = storage.Client()
bucket = storage_client.bucket(bucketname)
blob = bucket.blob(filename)
blob.download_to_filename("/documents/" + filename)
# [END gke_databases_weaviate_docker_embed_docs_retrieval]

# [START gke_databases_weaviate_docker_embed_docs_split]
loader = PyPDFLoader("/documents/" + filename)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = loader.load_and_split(text_splitter)
# [END gke_databases_weaviate_docker_embed_docs_split]

# [START gke_databases_weaviate_docker_embed_docs_embed]
embeddings = VertexAIEmbeddings("textembedding-gecko@001")
# [END gke_databases_weaviate_docker_embed_docs_embed]

# [START gke_databases_weaviate_docker_embed_docs_storage]
auth_config = weaviate.auth.AuthApiKey(api_key=os.getenv("APIKEY"))
client = weaviate.WeaviateClient(
connection_params=ConnectionParams.from_params(
http_host=os.getenv("WEAVIATE_ENDPOINT"),
http_port="80",
http_secure=False,
grpc_host=os.getenv("WEAVIATE_GRPC_ENDPOINT"),
grpc_port="50051",
grpc_secure=False,
),
auth_client_secret=auth_config
)
client.connect()
if not client.collections.exists("trainingdocs"):
collection = client.collections.create(name="trainingdocs")
db = WeaviateVectorStore.from_documents(documents, embeddings, client=client, index_name="trainingdocs")
# [END gke_databases_weaviate_docker_embed_docs_storage]

print(filename + " was successfully embedded")
print(f"# of vectors = {len(documents)}")

88 changes: 88 additions & 0 deletions databases/weaviate/docker/embed-docs/endpoint.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
request_data = request.get_json()
print(request_data)
bckt = request_data['bucket']
f_name = request_data['name']
id = request_data['generation']
kube_create_job(bckt, f_name, id)
return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
# [START gke_databases_weaviate_docker_embed_endpoint_job]
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace, container_name="jobcontainer", env_vars={}):

body = client.V1Job(api_version="batch/v1", kind="Job")
body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
body.status = client.V1JobStatus()

template = client.V1PodTemplate()
template.template = client.V1PodTemplateSpec()
env_list = [
client.V1EnvVar(name="WEAVIATE_ENDPOINT", value=os.getenv("WEAVIATE_ENDPOINT")),
client.V1EnvVar(name="WEAVIATE_GRPC_ENDPOINT", value=os.getenv("WEAVIATE_GRPC_ENDPOINT")),
client.V1EnvVar(name="FILE_NAME", value=f_name),
client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
client.V1EnvVar(name="APIKEY", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="AUTHENTICATION_APIKEY_ALLOWED_KEYS", name="apikeys"))),
]

container = client.V1Container(name=container_name, image=container_image, image_pull_policy='Always', env=env_list)
template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
return body
# [END gke_databases_weaviate_docker_embed_endpoint_job]
def kube_test_credentials():
try:
api_response = api_instance.get_api_resources()
logging.info(api_response)
except ApiException as e:
print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
container_image = os.getenv("JOB_IMAGE")
namespace = os.getenv("JOB_NAMESPACE")
name = "docs-embedder" + id
body = kube_create_job_object(name, container_image, bckt, f_name, namespace)
v1=client.BatchV1Api()
try:
v1.create_namespaced_job(namespace, body, pretty=True)
except ApiException as e:
print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
return

if __name__ == '__main__':
app.run('0.0.0.0', port=5001, debug=True)
15 changes: 15 additions & 0 deletions databases/weaviate/docker/embed-docs/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
google-cloud-storage==2.16.0
google-cloud-aiplatform==1.51.0
langchain==0.1.20
langchain-community==0.0.38
langchain-google-vertexai==0.1.3
langchain-weaviate==0.0.2
weaviate-client==4.6.5
pypdf==3.17.4
click==8.1.7
Flask==2.3.3
itsdangerous==2.2.0
Jinja2==3.1.4
MarkupSafe==2.1.5
Werkzeug==3.0.3
kubernetes==28.1.0
Loading