Skip to content

Commit

Permalink
Merge pull request #612 from onixlas/fix-refs
Browse files Browse the repository at this point in the history
Fix refs
  • Loading branch information
yzhao062 authored Dec 20, 2024
2 parents 0c53f3b + d5caaec commit 75eab5f
Show file tree
Hide file tree
Showing 4 changed files with 16 additions and 4 deletions.
2 changes: 1 addition & 1 deletion docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ Proximity-Based SOD Subspace Outlier Detection
Proximity-Based ROD Rotation-based Outlier Detection 2020 :class:`pyod.models.rod.ROD` :cite:`a-almardeny2020novel`
Outlier Ensembles IForest Isolation Forest 2008 :class:`pyod.models.iforest.IForest` :cite:`a-liu2008isolation,a-liu2012isolation`
Outlier Ensembles INNE Isolation-based Anomaly Detection Using Nearest-Neighbor Ensembles 2018 :class:`pyod.models.inne.INNE` :cite:`a-bandaragoda2018isolation`
Outlier Ensembles DIF Deep Isolation Forest for Anomaly Detection 2023 :class:`pyod.models.dif.DIF` :cite:`a-Xu2023Deep`
Outlier Ensembles DIF Deep Isolation Forest for Anomaly Detection 2023 :class:`pyod.models.dif.DIF` :cite:`a-xu2023dif`
Outlier Ensembles FB Feature Bagging 2005 :class:`pyod.models.feature_bagging.FeatureBagging` :cite:`a-lazarevic2005feature`
Outlier Ensembles LSCP LSCP: Locally Selective Combination of Parallel Outlier Ensembles 2019 :class:`pyod.models.lscp.LSCP` :cite:`a-zhao2019lscp`
Outlier Ensembles XGBOD Extreme Boosting Based Outlier Detection **(Supervised)** 2018 :class:`pyod.models.xgbod.XGBOD` :cite:`a-zhao2018xgbod`
Expand Down
12 changes: 11 additions & 1 deletion docs/zreferences.bib
Original file line number Diff line number Diff line change
Expand Up @@ -517,4 +517,14 @@ @inproceedings{pang2019deep
booktitle={Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery \& data mining},
pages={353--362},
year={2019}
}
}

@inproceedings{hashemi2019filter,
title={Filtering Approaches for Dealing with Noise in Anomaly Detection},
url={http://dx.doi.org/10.1109/CDC40024.2019.9029258},
DOI={10.1109/cdc40024.2019.9029258},
booktitle={2019 IEEE 58th Conference on Decision and Control (CDC)},
publisher={IEEE},
author={Hashemi, Navid and German, Eduardo Verdugo and Pena Ramirez, Jonatan and Ruths, Justin},
year={2019},
month=dec, pages={5356--5361} }
2 changes: 1 addition & 1 deletion pyod/models/ecod.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ class ECOD(BaseDetector):
Cumulative Distribution Functions (ECOD)
ECOD is a parameter-free, highly interpretable outlier detection algorithm
based on empirical CDF functions.
See :cite:`Li2021ecod` for details.
See :cite:`li2021ecod` for details.
Parameters
----------
Expand Down
4 changes: 3 additions & 1 deletion pyod/models/so_gaal.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,10 +179,11 @@ def fit(self, X, y=None):
optimizer_d.step()

self.train_history['discriminator_loss'].append(d_loss.item())

trick_labels = torch.ones(batch_size, 1)

if stop == 0:
# Train Generator
trick_labels = torch.ones(batch_size, 1)
g_loss = criterion(
self.discriminator(self.generator(noise)),
trick_labels)
Expand All @@ -198,6 +199,7 @@ def fit(self, X, y=None):
trick_labels)
self.train_history['generator_loss'].append(g_loss.item())


if epoch + 1 > self.stop_epochs:
stop = 1

Expand Down

0 comments on commit 75eab5f

Please sign in to comment.