Skip to content

Commit

Permalink
Merge pull request #5 from yuecideng/dev/UnifyRansac
Browse files Browse the repository at this point in the history
Unify Ransac
  • Loading branch information
yuecideng authored Mar 9, 2022
2 parents beb9cbb + 25ee943 commit 9a2e4f4
Show file tree
Hide file tree
Showing 5 changed files with 38 additions and 120 deletions.
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ This library aims at providing some useful 3d processing algorithms which Open3D
Core modules:
- `common`:
1. Normals estimaiton from PointMap
2. Ransac for primitives fitting, including plane, sphere and cylinder, and support parallel computing.
2. Ransac for primitives fitting, including plane, sphere and cylinder, with parallel computing supported.
3. K nearest neighbors search based on [annoy](https://github.com/spotify/annoy). It has the similar API as `open3d.geometry.KDTreeFlann` class (the radius search is not supported).
- `preprocessing`:
1. Farthest point sampling
Expand Down Expand Up @@ -63,9 +63,9 @@ import misc3d as m3d
m3d.common.estimate_normals(pcd, (848, 480), 3)
# ransac for primitives fitting
w, index = m3d.common.fit_plane(pcd, 0.01, 100, enable_parallel=False)
w, index = m3d.common.fit_sphere(pcd, 0.01, 100, enable_parallel=False)
w, index = m3d.common.fit_cylinder(pcd, 0.01, 100, enable_parallel=False)
w, index = m3d.common.fit_plane(pcd, 0.01, 100)
w, index = m3d.common.fit_sphere(pcd, 0.01, 100)
w, index = m3d.common.fit_cylinder(pcd, 0.01, 100)
# farthest point sampling
indices = m3d.preprocessing.farthest_point_sampling(pcd, 1000)
Expand Down
4 changes: 1 addition & 3 deletions examples/cpp/test_ransac_and_edge.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,7 @@ int main(int argc, char *argv[]) {
misc3d::Timer timer;
timer.Start();
misc3d::common::RANSACPlane fit;
fit.SetMaxIteration(400);
fit.SetProbability(0.99);
fit.SetParallel(true);
fit.SetMaxIteration(1000);
misc3d::common::Plane plane;
std::vector<size_t> inliers;
fit.SetPointCloud(*pcd_down);
Expand Down
2 changes: 1 addition & 1 deletion examples/python/test_ransac_and_edge.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
print('Point size after sampling', pcd)

t0 = time.time()
w, index = m3d.common.fit_plane(pcd, 0.01, 400, enable_parallel=True)
w, index = m3d.common.fit_plane(pcd, 0.01, 1000)
print('Plan fitting time: %.3f' % (time.time() - t0))

plane = pcd.select_by_index(index)
Expand Down
126 changes: 26 additions & 100 deletions include/misc3d/common/ransac.h
Original file line number Diff line number Diff line change
Expand Up @@ -459,8 +459,7 @@ class RANSAC {
: fitness_(0)
, inlier_rmse_(0)
, max_iteration_(1000)
, probability_(0.99)
, enable_parallel_(false) {}
, probability_(0.9999) {}

/**
* @brief Set Point Cloud to be used for RANSAC
Expand Down Expand Up @@ -490,13 +489,6 @@ class RANSAC {
*/
void SetMaxIteration(size_t num) { max_iteration_ = num; }

/**
* @brief enable parallel ransac fitting
*
* @param flag
*/
void SetParallel(bool flag) { enable_parallel_ = flag; }

/**
* @brief fit model with given parameters
*
Expand All @@ -515,11 +507,7 @@ class RANSAC {
return false;
}

if (enable_parallel_) {
return FitModelParallel(threshold, model, inlier_indices);
} else {
return FitModelVanilla(threshold, model, inlier_indices);
}
return FitModelParallel(threshold, model, inlier_indices);
}

private:
Expand Down Expand Up @@ -556,94 +544,29 @@ class RANSAC {
}

/**
* @brief vanilla ransac fitting method, the iteration number is varying
* with inlier number in each iteration
* @brief Ransac fitting method, the iteration number is varying
* with inlier number in each iteration using multithreading.
*
* @param threshold
* @param model
* @param inlier_indices
* @return true
* @return false
*/
bool FitModelVanilla(double threshold, Model &model,
std::vector<size_t> &inlier_indices) {
bool FitModelParallel(double threshold, Model &model,
std::vector<size_t> &inlier_indices) {
const size_t num_points = pc_.points_.size();
std::vector<size_t> indices_list(num_points);
std::iota(std::begin(indices_list), std::end(indices_list), 0);

Model best_model;
size_t count = 0;
size_t current_iteration = max_iteration_;
for (size_t i = 0; i < current_iteration; ++i) {
const std::vector<size_t> sample_indices =
sampler_(indices_list, estimator_.minimal_sample_);
const auto sample = pc_.SelectByIndex(sample_indices);

bool ret;
ret = estimator_.MinimalFit(*sample, model);

if (!ret) {
size_t current_iteration = std::numeric_limits<size_t>::max();
#pragma omp parallel for schedule(static)
for (size_t i = 0; i < max_iteration_; ++i) {
if (count > current_iteration) {
continue;
}

const auto result = EvaluateModel(pc_.points_, threshold, model);
double fitness = std::get<0>(result);
double inlier_rmse = std::get<1>(result);

// update model if satisfy both fitness and rmse check
if (fitness > fitness_ ||
(fitness == fitness_ && inlier_rmse < inlier_rmse_)) {
fitness_ = fitness;
inlier_rmse_ = inlier_rmse;
best_model = model;
const size_t tmp =
log(1 - probability_) /
log(1 - pow(fitness, estimator_.minimal_sample_));
if (tmp < 0) {
current_iteration = max_iteration_;
} else {
current_iteration = std::min(tmp, max_iteration_);
}
}

// break the loop if count larger than max iteration
if (current_iteration > max_iteration_) {
break;
}
count++;
}

misc3d::LogInfo(
"[vanilla ransac] find best model with {}% inliers and run {} "
"iterations",
fitness_ * 100, count);

const bool ret = RefineModel(threshold, best_model, inlier_indices);
model = best_model;
return ret;
}

/**
* @brief parallel ransac fitting method, the iteration number is fixed and
* use OpenMP to speed up. Usually used if you want more accurate result.
*
* @param threshold
* @param model
* @param inlier_indices
* @return true
* @return false
*/
bool FitModelParallel(double threshold, Model &model,
std::vector<size_t> &inlier_indices) {
std::tuple<double, double> result;
Model best_model;

const size_t num_points = pc_.points_.size();
std::vector<size_t> indices_list(num_points);
std::iota(std::begin(indices_list), std::end(indices_list), 0);

#pragma omp parallel for shared(indices_list)
for (size_t i = 0; i < max_iteration_; ++i) {
const std::vector<size_t> sample_indices =
sampler_(indices_list, estimator_.minimal_sample_);
const auto sample = pc_.SelectByIndex(sample_indices);
Expand All @@ -656,30 +579,34 @@ class RANSAC {
continue;
}

const auto result_current =
EvaluateModel(pc_.points_, threshold, model_trial);
const double &fitness = std::get<0>(result_current);
const double &inlier_rmse = std::get<1>(result_current);
const auto result = EvaluateModel(pc_.points_, threshold, model_trial);
double fitness = std::get<0>(result);
double inlier_rmse = std::get<1>(result);
#pragma omp critical
{
const double &fitness_tmp = std::get<0>(result);
const double &inlier_rmse_tmp = std::get<1>(result);
if (fitness > fitness_tmp ||
(fitness == fitness_tmp && inlier_rmse < inlier_rmse_tmp)) {
result = result_current;
// update model if satisfy both fitness and rmse check
if (fitness > fitness_ ||
(fitness == fitness_ && inlier_rmse < inlier_rmse_)) {
fitness_ = fitness;
inlier_rmse_ = inlier_rmse;
best_model = model_trial;

const size_t tmp =
log(1 - probability_) /
log(1 - pow(fitness, estimator_.minimal_sample_));
current_iteration = std::min(tmp, max_iteration_);
}
count++;
}
}

misc3d::LogInfo(
"[parallel ransac] find best model with {}% inliers and run {} "
"Find best model with {}% inliers and run {} "
"iterations",
std::get<0>(result) * 100, max_iteration_);
fitness_ * 100, count);

const bool ret = RefineModel(threshold, best_model, inlier_indices);
model = best_model;

return ret;
}

Expand Down Expand Up @@ -722,7 +649,6 @@ class RANSAC {
double inlier_rmse_;
Sampler sampler_;
ModelEstimator estimator_;
bool enable_parallel_;
};

using RandomIndexSampler = RandomSampler<size_t>;
Expand Down
18 changes: 6 additions & 12 deletions python/py_common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,10 @@ namespace common {

std::tuple<Eigen::VectorXd, std::vector<size_t>> FitPlane(
const PointCloudPtr &pc, double threshold, size_t max_iteration,
double probability, bool enable_parallel) {
double probability) {
RANSACPlane fit;
fit.SetMaxIteration(max_iteration);
fit.SetProbability(probability);
fit.SetParallel(enable_parallel);
Plane plane;
std::vector<size_t> inliers;
fit.SetPointCloud(*pc);
Expand All @@ -29,11 +28,10 @@ std::tuple<Eigen::VectorXd, std::vector<size_t>> FitPlane(

std::tuple<Eigen::VectorXd, std::vector<size_t>> FitSphere(
const PointCloudPtr &pc, double threshold, size_t max_iteration,
double probability, bool enable_parallel) {
double probability) {
RANSACShpere fit;
fit.SetMaxIteration(max_iteration);
fit.SetProbability(probability);
fit.SetParallel(enable_parallel);
Sphere sphere;
std::vector<size_t> inliers;
fit.SetPointCloud(*pc);
Expand All @@ -48,11 +46,10 @@ std::tuple<Eigen::VectorXd, std::vector<size_t>> FitSphere(

std::tuple<Eigen::VectorXd, std::vector<size_t>> FitCylinder(
const PointCloudPtr &pc, double threshold, size_t max_iteration,
double probability, bool enable_parallel) {
double probability) {
RANSACShpere fit;
fit.SetMaxIteration(max_iteration);
fit.SetProbability(probability);
fit.SetParallel(enable_parallel);
Sphere sphere;
std::vector<size_t> inliers;
fit.SetPointCloud(*pc);
Expand All @@ -68,16 +65,13 @@ std::tuple<Eigen::VectorXd, std::vector<size_t>> FitCylinder(
void pybind_common(py::module &m) {
m.def("fit_plane", &FitPlane, "Fit a plane from point clouds",
py::arg("pc"), py::arg("threshold") = 0.01,
py::arg("max_iteration") = 1000, py::arg("probability") = 0.99,
py::arg("enable_parallel") = false);
py::arg("max_iteration") = 1000, py::arg("probability") = 0.9999);
m.def("fit_sphere", &FitSphere, "Fit a sphere from point clouds",
py::arg("pc"), py::arg("threshold") = 0.01,
py::arg("max_iteration") = 1000, py::arg("probability") = 0.99,
py::arg("enable_parallel") = false);
py::arg("max_iteration") = 1000, py::arg("probability") = 0.9999);
m.def("fit_cylinder", &FitCylinder, "Fit a cylinder from point clouds",
py::arg("pc"), py::arg("threshold") = 0.01,
py::arg("max_iteration") = 1000, py::arg("probability") = 0.99,
py::arg("enable_parallel") = false);
py::arg("max_iteration") = 1000, py::arg("probability") = 0.9999);
m.def(
"estimate_normals",
[](const PointCloudPtr &pc, const std::tuple<int, int> shape, int k,
Expand Down

0 comments on commit 9a2e4f4

Please sign in to comment.