Skip to content

Implement visual inertial odometry from scratch

Notifications You must be signed in to change notification settings

ychen921/Stereo_VIO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Stereo MSCKF

See the course website for more details. The code was modified by Dr. Lening Li.

MSCKF (Multi-State Constraint Kalman Filter) is an EKF based tightly-coupled visual-inertial odometry algorithm. S-MSCKF is MSCKF's stereo version. This project is a Python reimplemention of S-MSCKF, the code is directly translated from official C++ implementation KumarRobotics/msckf_vio.

For algorithm details, please refer to:

  • Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight, Ke Sun et al. (2017)
  • A Multi-State Constraint Kalman Filterfor Vision-aided Inertial Navigation, Anastasios I. Mourikis et al. (2006)

Requirements

  • Python 3.6+
  • numpy
  • scipy
  • cv2
  • pangolin (optional, for trajectory/poses visualization)

Dataset

  • EuRoC MAV: visual-inertial datasets collected on-board a MAV. The datasets contain stereo images, synchronized IMU measurements, and ground-truth.
    This project implements data loader and data publisher for EuRoC MAV dataset.

Run

python vio.py --view --path path/to/your/EuRoC_MAV_dataset/MH_01_easy
or
python vio.py --path path/to/your/EuRoC_MAV_dataset/MH_01_easy (no visualization)

Results

MH_01_easy

License and References

Follow license of msckf_vio. Code is adapted from this implementation.

Releases

No releases published

Packages

No packages published

Languages