Skip to content

w-winnie/MLTrainingPipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLProjectTemplate

Setup

1

Set up virtual env

conda create -n venv-template python=3.10 conda activate venv-template pip install -r requirements.txt

Run

Make sure your launch.json file is up to date and using your desired arguments and run with vscode debugger

OR

python run.py --input_data_path ./local/sample_data.csv --output_data_path ./local/output_sample_data.csv --model_path ./local/models --run_env local

python run.py --input_data_path gs://ml-project-template/input_data/sample_data.csv --output_data_path gs://ml-project-template/output_data/output_sample_data.csv --model_path gs://ml-project-template/model --run_env gcs

OR

2

Build a package

python setup.py install

OR

3

Set up docker

(Ensure docker is installed on your machine)

https://cloud.google.com/artifact-registry/docs/docker/store-docker-container-images#get-image https://medium.com/@abhinav.90444/title-pushing-artifacts-to-artifact-registry-a-step-by-step-guide-97f825242cfc

docker build -t myapp .

docker run myapp --input_data_path /app/local/sample_data.csv --output_data_path /app/local/output_sample_data.csv --model_path /app/local/models/ --run_env local

docker run myapp --input_data_path gs://ml-project-template/input_data/sample_data.csv --output_data_path gs://ml-project-template/output_data/output_sample_data.csv --model_path gs://ml-project-template/model --run_env gcs

Artifact Registry

GCP - Artifact registry gcloud auth configure-docker us-central1-docker.pkg.dev docker tag myapp us-central1-docker.pkg.dev//ml-project-template/myapp:dev

docker push us-central1-docker.pkg.dev//ml-project-template/myapp:dev

Run on vertex AI

gcloud ai custom-jobs create --region=us-central1 --display-name=training_test_cli3 --worker-pool-spec=machine-type=n1-standard-4,replica-count=1,container-image-uri=us-central1-docker.pkg.dev//ml-project-template/myapp:dev --worker-pool-spec=machine-type=n1-standard-4,replica-count=1,container-image-uri=us-central1-docker.pkg.dev//ml-project-template/myapp:dev --args="--input_data_path=gs://ml-project-template/input_data/sample_data.csv,--output_data_path=gs://ml-project-template/output_data/test_out,--model_path=gs://ml-project-template/model,--run_env=gcs"

Project Structure

FullName

RepoName.vscode RepoName\local RepoName\modules RepoName.gitignore RepoName\README.md RepoName\run.py RepoName\setup.py RepoName.vscode\launch.json RepoName\local\final_dataset.csv RepoName\local\sample_data.csv RepoName\modules\config RepoName\modules\io RepoName\modules\ml RepoName\modules\pipeline RepoName\modules\utils RepoName\modules\config\job_config.py RepoName\modules\io\read_data.py RepoName\modules\io\save_data.py RepoName\modules\io\save_model.py RepoName\modules\ml\evaluation RepoName\modules\ml\model RepoName\modules\ml\preparation RepoName\modules\ml\tuning RepoName\modules\ml\train.py RepoName\modules\ml\evaluation\model_evalua... RepoName\modules\ml\model\model.py RepoName\modules\ml\preparation\transforms
RepoName\modules\ml\preparation\data_prep_p... RepoName\modules\ml\preparation\data_split.py
RepoName\modules\ml\preparation\helper.py
RepoName\modules\ml\tuning\tuning.py RepoName\modules\pipeline\pipeline.py RepoName\modules\utils\constants.py RepoName\modules\utils\helper.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published