Skip to content

Commit

Permalink
Added interior product and properties
Browse files Browse the repository at this point in the history
  • Loading branch information
MetalCreator666 committed Jan 24, 2025
1 parent b92dabc commit f22676a
Showing 1 changed file with 20 additions and 1 deletion.
21 changes: 20 additions & 1 deletion DeRhamCohomology/DifferentialForm.lean
Original file line number Diff line number Diff line change
Expand Up @@ -211,9 +211,22 @@ theorem pullback_constOfIsEmpty (f : E → F) (g : G) :
rfl

/- Interior product of differential forms -/
def iprod (ω : Ω^(m + 1)⟮E, F⟯) (v : E → E) : Ω^m⟮E, F⟯ :=
def iprod (ω : Ω^m + 1⟮E, F⟯) (v : E → E) : Ω^m⟮E, F⟯ :=
fun e => ContinuousAlternatingMap.curryFin (ω e) (v e)

/- Interior product is antisymmetric -/
theorem iprod_antisymm (ω : Ω^m + 2⟮E, ℝ⟯) (v w : E → E) (e : E) (m' : Fin m → E) :
iprod (iprod ω v) w e m' = - iprod (iprod ω w) v e m' := by
sorry

/- Interior product with twice the same vector field is zero -/
theorem iprod_iprod (ω : Ω^m + 2⟮E, ℝ⟯) (v : E → E) :
iprod (iprod ω v) v = 0 := by
ext e m'
let h := iprod_antisymm ω v v e m'
rw [eq_neg_iff_add_eq_zero, add_self_eq_zero] at h
exact h

/- Wedge product of differential forms -/
def wedge_product (ω₁ : Ω^m⟮E, F⟯) (ω₂ : Ω^n⟮E, F'⟯) (f : F →L[ℝ] F' →L[ℝ] F'') :
Ω^(m + n)⟮E, F''⟯ := fun e => ContinuousAlternatingMap.wedge_product (ω₁ e) (ω₂ e) f
Expand Down Expand Up @@ -324,3 +337,9 @@ theorem ederiv_wedge (ω : Ω^m⟮E, F⟯) (τ : Ω^n⟮E, F'⟯) (f : F →L[
ext x y
rw[_root_.add_apply, /- `ContinuousAlternatingMap.add_apply` doesn't work??? -/]
sorry

/- The graded Leibniz rule for the interior product of the wedge product -/
theorem iprod_wedge (ω : Ω^m + 1⟮E, F⟯) (τ : Ω^n + 1⟮E, F'⟯) (f : F →L[ℝ] F' →L[ℝ] F'') (v : E → E) :
iprod (domDomCongr finAddFlipAssoc (ω ∧[f] τ)) v = ((iprod ω v) ∧[f] τ)
+ (-1)^m • (domDomCongr finAddFlipAssoc (ω ∧[f] (iprod τ v))) := by
sorry

0 comments on commit f22676a

Please sign in to comment.