-
-
Notifications
You must be signed in to change notification settings - Fork 1.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Nightly #632
Merged
Merged
Nightly #632
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
* support `revision` parameter * match unsloth formatting of named parameters
Check for incompatible modules before importing unsloth
…d testing. (#345) * Add save to llama.cpp GGML to save.py. * Fix conversion command and path of convert to GGML function. * Add autosaving lora to the GGML function * Create lora save function for conversion to GGML * Test fix #2 for saving lora * Test fix #3 to save the lora adapters to convert to GGML * Remove unwated tokenizer saving for conversion to ggml and added a few print statements. * Needed tokenizer for saving, added it back, also made it more unslothy style by having positional arguments, and added a few messages. * Positional arguments didn't work out, so reverted to older version of the code, and added a few comments. * Test fix 1 for arch * Test fix 2 new Mistral error. * Test fix 3 * Revert to old version for testing. * Upload issue test fix 1 * Fix 2 uploading ggml * Positional ags added. * Temporray remove positional args * Fix upload again!!! * Add print statements and fix link * Make the calling name better * Create local saving for GGML * Add choosing directory to save local GGML. * Fix lil variable error in the save_to_custom_dir func
llama.cpp is failing to generate quantize versions for the trained models. Error: ```bash You might have to compile llama.cpp yourself, then run this again. You do not need to close this Python program. Run the following commands in a new terminal: You must run this in the same folder as you're saving your model. git clone https://github.com/ggerganov/llama.cpp cd llama.cpp && make clean && LLAMA_CUDA=1 make all -j Once that's done, redo the quantization. ``` But when i do clone this with recursive it works. Co-authored-by: Daniel Han <[email protected]>
* fix libcuda_dirs import for triton 3.0 * Update __init__.py * Update __init__.py --------- Co-authored-by: Daniel Han <[email protected]>
sebdg
added a commit
to sebdg/unsloth
that referenced
this pull request
Jun 14, 2024
* Update llama.py * offload * Update llama.py * Update llama.py * Update llama.py * Update llama.py * Update llama.py * Update llama.py * Update llama.py * continued pretraining trainer * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * is_bfloat16_supported * Update __init__.py * Update README.md * Update llama.py * is_bfloat16_supported * Update __init__.py * Mistral v3 * Phi 3 medium * Update chat_templates.py * Update chat_templates.py * Phi-3 * Update save.py * Update README.md Mistral v3 to Mistral v0.3 * Untrained tokens * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update llama.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update save.py * Update save.py * Update save.py * checkpoint * Update _utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update tokenizer_utils.py * Update llama.py * accelerate * Update _utils.py * Update _utils.py * Update _utils.py * Update _utils.py * Update _utils.py * Update _utils.py * Update _utils.py * Update tokenizer_utils.py * train_dataloader * Update llama.py * Update llama.py * Update llama.py * use_fast_convert * Update save.py * Update save.py * Update save.py * Update save.py * remove_special_tokens * Ollama * Update chat_templates.py * Update chat_templates.py * Update chat_templates.py * Update llama.py * Update chat_templates.py * Support bfloat16 GGUF * Update save.py * Update llama.py * fast_forward_inference * Update mapper.py * Update loader.py * Update llama.py * Update tokenizer_utils.py * info * edits * Create chat template * Fix tokenizer * Update tokenizer_utils.py * fix case where gguf saving fails due to first_conversion dtype (unslothai#630) * Support revision parameter in FastLanguageModel.from_pretrained (unslothai#629) * support `revision` parameter * match unsloth formatting of named parameters * clears any selected_adapters before calling internal_model.save_pretrained (unslothai#609) * Update __init__.py (unslothai#602) Check for incompatible modules before importing unsloth * Fixed unsloth/tokenizer_utils.py for chat training (unslothai#604) * Add GGML saving option to Unsloth for easier Ollama model creation and testing. (unslothai#345) * Add save to llama.cpp GGML to save.py. * Fix conversion command and path of convert to GGML function. * Add autosaving lora to the GGML function * Create lora save function for conversion to GGML * Test fix unslothai#2 for saving lora * Test fix unslothai#3 to save the lora adapters to convert to GGML * Remove unwated tokenizer saving for conversion to ggml and added a few print statements. * Needed tokenizer for saving, added it back, also made it more unslothy style by having positional arguments, and added a few messages. * Positional arguments didn't work out, so reverted to older version of the code, and added a few comments. * Test fix 1 for arch * Test fix 2 new Mistral error. * Test fix 3 * Revert to old version for testing. * Upload issue test fix 1 * Fix 2 uploading ggml * Positional ags added. * Temporray remove positional args * Fix upload again!!! * Add print statements and fix link * Make the calling name better * Create local saving for GGML * Add choosing directory to save local GGML. * Fix lil variable error in the save_to_custom_dir func * docs: Add LoraConfig parameters documentation (unslothai#619) * llama.cpp failing (unslothai#371) llama.cpp is failing to generate quantize versions for the trained models. Error: ```bash You might have to compile llama.cpp yourself, then run this again. You do not need to close this Python program. Run the following commands in a new terminal: You must run this in the same folder as you're saving your model. git clone https://github.com/ggerganov/llama.cpp cd llama.cpp && make clean && LLAMA_CUDA=1 make all -j Once that's done, redo the quantization. ``` But when i do clone this with recursive it works. Co-authored-by: Daniel Han <[email protected]> * fix libcuda_dirs import for triton 3.0 (unslothai#227) * fix libcuda_dirs import for triton 3.0 * Update __init__.py * Update __init__.py --------- Co-authored-by: Daniel Han <[email protected]> * Update save.py * Update __init__.py * Update fast_lora.py * Update save.py * Update save.py * Update save.py * Update loader.py * Update save.py * Update save.py * quantize now llama-quantize * Update chat_templates.py * Update loader.py * Update mapper.py * Update __init__.py * embedding size --------- Co-authored-by: Michael Han <[email protected]> Co-authored-by: Eliot Hall <[email protected]> Co-authored-by: Rickard Edén <[email protected]> Co-authored-by: XiaoYang <[email protected]> Co-authored-by: Oseltamivir <[email protected]> Co-authored-by: mahiatlinux <[email protected]> Co-authored-by: Sébastien De Greef <[email protected]> Co-authored-by: Alberto Ferrer <[email protected]> Co-authored-by: Thomas Viehmann <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.