Skip to content

theNinthElement/Visualization-and-Medical-Image-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visualization and Medical Image Analysis*

This repository aims to develop a CNN-based 2D semantic segmentation module for brain tumor detection on BraTS 2019 dataset.

Architecture: U-Net

Installation:

pip install -e .

Train:

python visualizer/train.py -c config/train.gin

Evaluation:

python visualizer/evaluate/evaluate.py -c config/evaluate.gin

References:

[1] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694.

[2] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, et al., "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 (2017) DOI: 10.1038/sdata.2017.117.

[3] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., "Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge", arXiv preprint arXiv:1811.02629 (2018).

[4] https://glassboxmedicine.com/2019/09/15/best-use-of-train-val-test-splits-with-tips-for-medical-data/

* - Under development phase

About

Visualization and Medical Image Analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages