Skip to content

tejas6995/Test-Repo-Subfolders

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance.

YOLOv6-nano achieves 35.0 mAP on COCO val2017 dataset with 1242 FPS on T4 using TensorRT FP16 for bs32 inference, and YOLOv6-s achieves 43.1 mAP on COCO val2017 dataset with 520 FPS on T4 using TensorRT FP16 for bs32 inference.

YOLOv6 is composed of the following methods:

  • Hardware-friendly Design for Backbone and Neck
  • Efficient Decoupled Head with SIoU Loss

Coming soon

  • YOLOv6 m/l/x model.
  • Deployment for MNN/TNN/NCNN/CoreML...
  • Quantization tools

Quick Start

Install

git clone https://github.com/meituan/YOLOv6
cd YOLOv6
pip install -r requirements.txt

Inference

First, download a pretrained model from the YOLOv6 release

Second, run inference with tools/infer.py

python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir
                                yolov6n.pt

Training

Single GPU

python tools/train.py --batch 32 --conf configs/yolov6s.py --data data/coco.yaml --device 0
                                         configs/yolov6n.py

Multi GPUs (DDP mode recommended)

python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s.py --data data/coco.yaml --device 0,1,2,3,4,5,6,7
                                                                                        configs/yolov6n.py
  • conf: select config file to specify network/optimizer/hyperparameters
  • data: prepare COCO dataset and specify dataset paths in data.yaml

Evaluation

Reproduce mAP on COCO val2017 dataset

python tools/eval.py --data data/coco.yaml  --batch 32 --weights yolov6s.pt --task val
                                                                 yolov6n.pt

Deployment

Tutorials

Benchmark

Model Size mAPval
0.5:0.95
SpeedV100
fp16 b32
(ms)
SpeedV100
fp32 b32
(ms)
SpeedT4
trt fp16 b1
(fps)
SpeedT4
trt fp16 b32
(fps)
Params
(M)
Flops
(G)
YOLOv6-n 416
640
30.8
35.0
0.3
0.5
0.4
0.7
1100
788
2716
1242
4.3
4.3
4.7
11.1
YOLOv6-tiny 640 41.3 0.9 1.5 425 602 15.0 36.7
YOLOv6-s 640 43.1 1.0 1.7 373 520 17.2 44.2
  • Comparisons of the mAP and speed of different object detectors are tested on COCO val2017 dataset.
  • Refer to Test speed tutorial to reproduce the speed results of YOLOv6.
  • Params and Flops of YOLOv6 are estimated on deployed model.
  • Speed results of other methods are tested in our environment using official codebase and model if not found from the corresponding official release.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published