Skip to content

tantalic/shaving-yaks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

73 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸͺ’ Shaving Yaks πŸ‘

πŸ§ͺ An over-engineered home lab. For fun and... 🏑

Shaving Yaks Cluster

Hardware

                                                     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                                                     β”‚ Network/Internet β”‚
                                                     β”‚    Connection    β”‚
                                                     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜

╔═Turing Pi 2.5 Cluster Board ═════════════════════════════════│══════════════╗
β•‘                                                                             β•‘
β•‘        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”         β•‘
β•‘        β”‚                 Internal Switch (1 Gbps)                 β”‚         β•‘
β•‘        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β•‘
β•‘                                      β”‚                                      β•‘
β•‘          β”Œ ─ ─ ─ ─ ─ ─ ─ ─ β”€β”Œ ─ ─ ─ ─└ ─ ─ ─ ─ ┐─ ─ ─ ─ ─ ─ ─ ─ ┐           β•‘
β•‘                                                                             β•‘
β•‘          β”‚                  β”‚                  β”‚                β”‚           β•‘
β•‘ ┏━━━━ Node 1 ━━━━┓ ┏━━━━ Node 2 ━━━━┓ ┏━━━━ Node 3 ━━━━┓ ┏━━━━ Node 4 ━━━━┓ β•‘
β•‘ ┃                ┃ ┃                ┃ ┃                ┃ ┃                ┃ β•‘
β•‘ ┃    yak-001     ┃ ┃    yak-002     ┃ ┃    yak-003     ┃ ┃   barber-001   ┃ β•‘
β•‘ ┃                ┃ ┃                ┃ ┃                ┃ ┃                ┃ β•‘
β•‘ ┃   Turing RK1   ┃ ┃  Raspberry Pi  ┃ ┃   Turing RK1   ┃ ┃  Raspberry Pi  ┃ β•‘
β•‘ ┃ Compute Module ┃ ┃Compute Module 4┃ ┃ Compute Module ┃ ┃Compute Module 4┃ β•‘
β•‘ ┃                ┃ ┃                ┃ ┃                ┃ ┃                ┃ β•‘
β•‘ ┃    16GB RAM    ┃ ┃    8GB RAM     ┃ ┃    16GB RAM    ┃ ┃    8GB RAM     ┃ β•‘
β•‘ ┃                ┃ ┃                ┃ ┃                ┃ ┃                ┃ β•‘
β•‘ ┃    8 Cores     ┃ ┃    4 Cores     ┃ ┃    8 Cores     ┃ ┃    4 Cores     ┃ β•‘
β•‘ ┃                ┃ ┃                ┃ ┃                ┃ ┃                ┃ β•‘
β•‘ ┗━━━━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━━━━━┛ β•‘
β•‘          β”‚                  β”‚                  β”‚                            β•‘
β•‘                                                                             β•‘
β•‘          β”‚                  β”‚                  β”‚                            β•‘
β•‘ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                                       β•‘
β•‘ β”‚   Mini PCIe    β”‚ β”‚   Mini PCIe    β”‚          β”‚                            β•‘
β•‘ β”‚    to SATA     β”‚ β”‚    to SATA     β”‚                                       β•‘
β•‘ β”‚    Adapter     β”‚ β”‚    Adapter     β”‚          β”‚                            β•‘
β•‘ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                       β•‘
β•‘          β”‚                  β”‚                  β”‚                            β•‘
β•‘                                                                             β•‘
β•‘          β”‚                  β”‚                  β”‚                            β•‘
β•‘ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                    β•‘
β•‘ β”‚    2TB 2.5"    β”‚ β”‚    2TB 2.5"    β”‚ β”‚    2TB 2.5"    β”‚                    β•‘
β•‘ β”‚    SATA SSD    β”‚ β”‚    SATA SSD    β”‚ β”‚    SATA SSD    β”‚                    β•‘
β•‘ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                    β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

Cluster Board

The cluster is built on the Turing Pi 2, a mini ITX board with a built-in 1 Gbps Ethernet switch. The Turing Pi 2 can host up to four compute modules including Raspberry Pi CM4, Nvidia Jetson and the Turing RK1.

Compute Modules

The cluster is using the following compute modules:

Node Device Processor Speed Cores RAM Storage
1 Turing Pi RK1 ARM v8 (4Γ—Cortex-A76, 4Γ—Cortex-A55) 2.4 GHz 8 16GB 32GB eMMC
2 Raspberry Pi CM4008032 ARM v8 (Cortex-A72) 1.5GHz 4 8GB 32GB eMMC
3 Turing Pi RK1 ARM v8 (4Γ—Cortex-A76, 4Γ—Cortex-A55) 2.4 GHz 8 16GB 32GB eMMC
4 Raspberry Pi CM4008032 ARM v8 (Cortex-A72) 1.5GHz 4 8GB 32GB eMMC

Additional Storage

Each of the three worker nodes is attached with addition storage:

Node Connection Drive
1 Mini PCIe to SATA 3.0 Card 2TB, 2.5" SATA 3.0 SSD
2 Mini PCIe to SATA 3.0 Card 2TB, 2.5" SATA 3.0 SSD
3 Turing Pi Onboard SATA 3.0 2TB, 2.5" SATA 3.0 SSD

Case

The Turing Pi board is installed in the Thermaltake Tower 100 (Snow) chassis.

Operating System

The OS for each compute module is setup as follows:

Node Operating System Hostname IP Address
1 Turing RK1 Ubuntu 22.04 (LTS) yak-001 192.168.5.1
2 Official Ubuntu 22.04 (LTS) yak-002 192.168.5.2
3 Turing RK1 Ubuntu 22.04 (LTS) yak-003 192.168.5.3
4 Official Ubuntu 22.04 (LTS) barber-001 192.168.5.51

Configuration was completed using the files found in the os-configuration/ directory in this repository, using the following steps:

  1. Flash the Ubuntu 22.04 Raspberry Pi image from Canonical onto the modules eMMC, via the Turing Pi 2 BMC. Once the flash is complete, power the device on bia the BMC web interface.

  2. Once the module has powered on, SSH into the fresh OS install with the default user account and password (ubuntu:ubuntu):

    ssh -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null [email protected]

    When prompted, change the password to a unique, secure value.

  3. Set the hostname by editing /etc/hostname

  4. Assign the node a reserved DHCP address (from table above) in the network.

  5. Copy SSH key(s) to allow for key-based authentication to the node by running ssh-copy-id -i ~/.ssh/id_ed25519.pub [email protected] from the external machines that should be able to connect to the nodes.

  6. Install any available updates via apt:

    sudo apt update && sudo apt upgrade

  7. Format and mount the

    # List block devices, verify the desired disk is sda before continuing 
    lsblk -f
    
    # Format the disk
    sudo mkfs -t ext4 /dev/sda
    
    # Verify format worked
    lsblk -f
    
    # Create the mount point
    sudo mkdir -p /mnt/longhorn-001
    
    # Get the disk UUID
    lsblk -f | grep sda
    
    # Edit the fstab, adding a line like this (with UUID replaced):
    # UUID=069e5955-1892-43f6-99c4-d8075887eb74   /mnt/longhorn-001   ext4   defaults   0   3
    sudo vi /etc/fstab
    
    # Mount the disk, verify that it worked
    sudo mount -a
    lsblk -f
  8. Reboot the node. After booting verify hostname, network configuration and drive(s) are all working as expected.

    sudo reboot

Kubernetes

The Kubernetes cluster is configured to have one node as the controller and the remaining nodes as workers.

Node Hostname Cluster Role
1 yak-001 worker
2 yak-002 worker
3 yak-003 worker
4 barber-001 controller

Kubernetes Installation

The cluster runs k0s, which is an all-inclusive Kubernetes distribution that still manages to be low friction for installation and management.

The Kubernetes setup is done via k0sctl, a command-line tool for bootstrapping and managing k0s clusters. Before proceeding, install k0sctl on your local workstation.

k0sctl works from a configuration file, k0s/cluster.yaml, which describes the desired cluster and connects to each host over SSH to configure as needed. The Kubernetes installation is done via a single command which only takes ~2 minutes to complete:

k0sctl apply --config k0s/cluster.yaml

Demo

Once the k0s cluster has been installed, the k0sctl kubeconfig command is used to get a kubeconfig file that can be used to connect to the cluster with tools such as kubectl.

k0sctl kubeconfig --config k0s/cluster.yaml > shaving-yaks.kubeconfig

Once this is completed, youc an connect to the cluster with most command-line tools by passing the --kubeconfig flag. For example, the kubectl command can now be used to verify the cluster is running:

kubectl get nodes --kubeconfig shaving-yaks.kubeconfig
NAME      STATUS   ROLES    AGE   VERSION
yak-002   Ready    <none>   1m    v1.28.4+k0s
yak-003   Ready    <none>   1m    v1.28.4+k0s
yak-004   Ready    <none>   1m    v1.28.4+k0s
get deployments --all-namespaces  --kubeconfig shaving-yaks.kubeconfig
NAMESPACE     NAME             READY   UP-TO-DATE   AVAILABLE   AGE
kube-system   coredns          2/2     2            2           1m
kube-system   metrics-server   1/1     1            1           1m

Flux

Flux is a set of continuous and progressive delivery solutions for Kubernetes designed to keep clusters in sync one ore more sources of configuration. In this case, Flux is used to adopt the GitOps approach for managing all applications running in the cluster.

First, install the Flux command-line tool on a local machine. This will be used to install and configure Flux.

Then use the flux bootstrap github command to deploiy the Flux controllers in the Kubernetes cluster and configures those controllers to sync the cluster state from this GitHub repository.

Note: This requires a GitHub personal access token (PAT) which for use with the GitHub API.

export GITHUB_USER=tantalic
export GITHUB_TOKEN=<redacted>
export GITHUB_REPO=shaving-yaks

flux bootstrap github \
  --kubeconfig ./shaving-yaks.kubeconfig \
  --token-auth \
  --owner=$GITHUB_USER \
  --repository=$GITHUB_REPO \
  --branch=main \
  --path=kubernetes/cluster \
  --personal

Demo

To verify Flux is watching the Git repository for changes, use the kubectl log commands on the source-controller deployment:

kubectl logs deployment/source-controller --namespace flux-system --kubeconfig ./shaving-yaks.kubeconfig --tail 1
{"level":"info","ts":"2023-12-27T08:18:38.317Z","msg":"no changes since last reconcilation: observed revision 'main@sha1:b7c5a953620aa4a55ac5592ff78f551edbabf47c'","controller":"gitrepository","controllerGroup":"source.toolkit.fluxcd.io","controllerKind":"GitRepository","GitRepository":{"name":"flux-system","namespace":"flux-system"},"namespace":"flux-system","name":"flux-system","reconcileID":"72871145-39c8-4bae-9413-e270726ab853"}

With Flux installed and connected to this Git repository, any operation on the cluster (even upgrading Flux) can be done via Git push, rather than through the Kubernetes API. The definitions for the flux components can be found in kubernetes/cluster/flux-system.

Sealed Secrets

Sealed Secrets provides a GitOps-friendly mechanisn for secure Kubernetes Secret Management. Instead of directly creating Kubernetes Secrets, Sealed Secrets objects are created, stored in this Git repository and commited to the Repository via Flux. The Sealed Secrets controller then automatically decrypts all Sealed Secrets into the equivalent native Kubernetes Secret for use within the cluster.

Because the encryption key is generated and stored in the cluster, Sealed Secrets are safe to store in local code repositories, along with the rest of Kubernetes objects.

Installing Sealed Secrets in Kubernetes

Sealed Secrets is installed via it's Helm chart. The specific configuration can be found in cluster/sealed-secrets/sealed-secrets-components.yaml. The objects were initially generated with the following flux create commands:

flux create source helm sealed-secrets \
    --url https://bitnami-labs.github.io/sealed-secrets \
    --namespace=sealed-secrets \
    --export
flux create helmrelease sealed-secrets \
    --interval=1h \
    --release-name=sealed-secrets-controller \
    --target-namespace=sealed-secrets \
    --source=HelmRepository/sealed-secrets \
    --chart=sealed-secrets \
    --chart-version="2.15.0" \
    --crds=CreateReplace \
    --export

Installing kubeseal

To generate and work with Kube Seal locally, install the kubeseal command-line tool.

Getting the Public Certificate

After Flux completes the installation, the public certificate that can be used to encrypt credentials can be fetched from the cluster with the following command:

kubeseal --fetch-cert \
    --kubeconfig ././shaving-yaks.kubeconfig \
    --controller-name=sealed-secrets-controller \
    --controller-namespace=sealed-secrets \
    > sealed-secrets-pub.pem

Creating a Sealed Secret

To create a Sealed Secret, you will first need a local secret in YAML format. As an example a simple secreat can be created with:

echo -n "some secret value" | kubectl create secret generic test-secret --dry-run=client --from-file=foo=/dev/stdin -o yaml > test-secret.yaml

The kubeseal command can then be used to convert this to a Sealed Secret:

kubeseal \
    --cert sealed-secrets-pub.pem \
    --secret-file test-secret.yaml \
    --sealed-secret-file test-secret.yaml

Tailscale

One of the challenges of a home lab is providing secure and reliable access to the applications running when you are not on the network. As I am already a (very) happy Tailscale user, the Tailscale Operator is a natural fit. Specifically this allows me to access services within the cluster (via Ingress) and to the Kubernetes API from any device connected to my tailnet.

Installing Tailscale Operator

Tailscale Operator is installed via it's Helm chart. The specific configuration can be found in kubernetes/cluster/tailscale/tailscale.yaml. The objects were initially generated with the following commands:

Namespace:

kubectl create namespace tailscale --dry-run=client -o yaml

Sealed Secret:

kubeseal \
    --cert sealed-secrets-pub.pem \
    --secret-file kubernetes/cluster/tailscale/secret.yaml \
    --sealed-secret-file kubernetes/cluster/tailscale/secret.yaml

Note: The original Secret, HelmRepository, HelmRelease were created manually.

About

πŸ§ͺ Over-engineered home lab 🏑

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages