Skip to content

A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.

License

Notifications You must be signed in to change notification settings

swigerb/azure-search-openai-demo-csharp

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

74 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ChatGPT + Enterprise data with Azure OpenAI and Cognitive Search

GitHub Workflow Status Open in GitHub - Codespaces Open in Remote - Containers

This sample demonstrates a few approaches for creating ChatGPT-like experiences over your own data using the Retrieval Augmented Generation pattern. It uses Azure OpenAI Service to access the ChatGPT model (gpt-35-turbo), and Azure Cognitive Search for data indexing and retrieval.

The repo includes sample data so it's ready to try end-to-end. In this sample application, we use a fictitious company called Contoso Electronics, and the experience allows its employees to ask questions about the benefits, internal policies, as well as job descriptions and roles.

RAG Architecture

For more details on how this application was built, check out:

We want to hear from you! Are you interested in building or currently building intelligent apps? Take a few minutes to complete this survey.

Take the survey

Features

  • Voice Chat, Chat and Q&A interfaces
  • Explores various options to help users evaluate the trustworthiness of responses with citations, tracking of source content, etc.
  • Shows possible approaches for data preparation, prompt construction, and orchestration of interaction between model (ChatGPT) and retriever (Cognitive Search)
  • Settings directly in the UX to tweak the behavior and experiment with options

Chat screen

Getting Started

Note
In order to deploy and run this example, you'll need an Azure subscription with access enabled for the Azure OpenAI service. You can request access here. You can also visit here to get some free Azure credits to get you started.

Warning
By default this sample will create an Azure App Service, Azure Static Web App, and Azure Cognitive Search resource that have a monthly cost, as well as Form Recognizer resource that has cost per document page. You can switch them to free versions of each of them if you want to avoid this cost by changing the parameters file under the infra folder (though there are some limits to consider; for example, you can have up to 1 free Cognitive Search resource per subscription, and the free Form Recognizer resource only analyzes the first 2 pages of each document.)

Prerequisites

To Run Locally

  • Azure Developer CLI
  • .NET 7
  • Git
  • Powershell 7+ (pwsh) - For Windows users only.
    • Important: Ensure you can run pwsh.exe from a PowerShell command. If this fails, you likely need to upgrade PowerShell.
  • Docker
    • Important: Ensure Docker is running before running any azd provisioning / deployment commands.

Note
Your Azure Account must have Microsoft.Authorization/roleAssignments/write permissions, such as User Access Administrator or Owner.

To Run in GitHub Codespaces or VS Code Remote Containers

You can run this repo virtually by using GitHub Codespaces or VS Code Remote Containers. Click on one of the buttons below to open this repo in one of those options.

Open in GitHub - Codespaces Open in Remote - Containers

Installation

Project Initialization

  1. Create a new folder and switch to it in the terminal
  2. Run azd auth login
  3. Run azd init -t azure-search-openai-demo-csharp
    • For the target location, the regions that currently support the model used in this sample are East US or South Central US. For an up-to-date list of regions and models, check here

Starting from scratch

Execute the following command, if you don't have any pre-existing Azure services and want to start from a fresh deployment.

  1. Run azd up - This will provision Azure resources and deploy this sample to those resources, including building the search index based on the files found in the ./data folder.

Note
This application uses the gpt-35-turbo model. When choosing which region to deploy to, make sure they're available in that region (i.e. EastUS). For more information, see the Azure OpenAI Service documentation.

  1. After the application has been successfully deployed you will see a URL printed to the console. Click that URL to interact with the application in your browser.

It will look like the following:

'Output from running azd up'

Note
It may take a few minutes for the application to be fully deployed.

Use existing resources

  1. Run azd env set AZURE_OPENAI_SERVICE {Name of existing OpenAI service}
  2. Run azd env set AZURE_OPENAI_RESOURCE_GROUP {Name of existing resource group that OpenAI service is provisioned to}
  3. Run azd env set AZURE_OPENAI_CHATGPT_DEPLOYMENT {Name of existing ChatGPT deployment}. Only needed if your ChatGPT deployment is not the default 'chat'.
  4. Run azd env set AZURE_OPENAI_GPT_DEPLOYMENT {Name of existing GPT deployment}. Only needed if your ChatGPT deployment is not the default davinci.
  5. Run azd up

NOTE: You can also use existing Search and Storage Accounts. See ./infra/main.parameters.json for list of environment variables to pass to azd env set to configure those existing resources.

Deploying or re-deploying a local clone of the repo

  • Run azd up

Deploying your repo using App Spaces

Note
Make sure you have AZD supported bicep files in your repository and add an initial GitHub Actions Workflow file which can either be triggered manually (for initial deployment) or on code change (automatically re-deploying with the latest changes) To make your repository compatible with App Spaces, you need to make changes to your main bicep and main parameters file to allow AZD to deploy to an existing resource group with the appropriate tags.

  1. Add AZURE_RESOURCE_GROUP to main parameters file to read the value from environment variable set in GitHub Actions workflow file by App Spaces.
    "resourceGroupName": {
       "value": "${AZURE_RESOURCE_GROUP}"
     }
  2. Add AZURE_TAGS to main parameters file to read the value from environment variable set in GitHub Actions workflow file by App Spaces.
    "tags": {
       "value": "${AZURE_TAGS}"
     }
  3. Add support for resource group and tags in your main bicep file to read the value being set by App Spaces.
    param resourceGroupName string = ''
    param tags string = ''
  4. Combine the default tags set by Azd with those being set by App Spaces. Replace tags initialization in your main bicep file with the following -
    var baseTags = { 'azd-env-name': environmentName }
    var updatedTags = union(empty(tags) ? {} : base64ToJson(tags), baseTags)
    Make sure to use "updatedTags" when assigning "tags" to resource group created in your bicep file and update the other resources to use "baseTags" instead of "tags". For example - 
    ```json
    resource rg 'Microsoft.Resources/resourceGroups@2021-04-01' = {
      name: !empty(resourceGroupName) ? resourceGroupName : '${abbrs.resourcesResourceGroups}${environmentName}'
      location: location
      tags: updatedTags
    }
    

Running locally

  1. Run azd auth login

  2. After the application deploys, set the environment variable AZURE_KEY_VAULT_ENDPOINT. You can find the value in the .azure/YOUR-ENVIRONMENT-NAME/.env file or the Azure portal.

  3. Run the following .NET CLI command to start the ASP.NET Core Minimal API server (client host):

    dotnet run --project ./app/backend/MinimalApi.csproj --urls=http://localhost:7181/
    

Navigate to http://localhost:7181, and test out the app.

Sharing Environments

Run the following if you want to give someone else access to the deployed and existing environment.

  1. Install the Azure CLI
  2. Run azd init -t azure-search-openai-demo-csharp
  3. Run azd env refresh -e {environment name} - Note that they will need the azd environment name, subscription Id, and location to run this command - you can find those values in your ./azure/{env name}/.env file. This will populate their azd environment's .env file with all the settings needed to run the app locally.
  4. Run pwsh ./scripts/roles.ps1 - This will assign all of the necessary roles to the user so they can run the app locally. If they do not have the necessary permission to create roles in the subscription, then you may need to run this script for them. Just be sure to set the AZURE_PRINCIPAL_ID environment variable in the azd .env file or in the active shell to their Azure Id, which they can get with az account show.

Clean up resources

Run azd down

Quickstart

  • In Azure: navigate to the Azure Static Web App deployed by azd. The URL is printed out when azd completes (as "Endpoint"), or you can find it in the Azure portal.
  • When running locally, navigate to http://localhost:7181 for the client app and http://localhost:7181/swagger for the Open API server page.

Once in the web app:

  • On the Voice Chat page, select the voice settings dialog and configure text-to-speech preferences.
    • You can either type messages to interact with Blazor Clippy, or select the Speak toggle button to use speech-to-text as your input.
  • Try different topics in Chat or Ask Questions context. For chat, try follow up questions, clarifications, ask to simplify or elaborate on answer, etc.
  • Explore citations and sources
  • Click on the "settings" icon to try different options, tweak prompts, etc.

Resources

Note
The PDF documents used in this demo contain information generated using a language model (Azure OpenAI Service). The information contained in these documents is only for demonstration purposes and does not reflect the opinions or beliefs of Microsoft. Microsoft makes no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information contained in this document. All rights reserved to Microsoft.

FAQ

Question: Why do we need to break up the PDFs into chunks when Azure Cognitive Search supports searching large documents?

Answer: Chunking allows us to limit the amount of information we send to OpenAI due to token limits. By breaking up the content, it allows us to easily find potential chunks of text that we can inject into OpenAI. The method of chunking we use leverages a sliding window of text such that sentences that end one chunk will start the next. This allows us to reduce the chance of losing the context of the text.

About

A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C# 48.4%
  • Bicep 24.9%
  • HTML 14.9%
  • Jupyter Notebook 6.2%
  • Shell 1.9%
  • CSS 1.8%
  • Other 1.9%