-
Notifications
You must be signed in to change notification settings - Fork 99
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add new models and conversion script.
- Loading branch information
1 parent
ee9d813
commit 452846f
Showing
3 changed files
with
442 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
import numpy as np | ||
from imageio import imread | ||
from scipy.stats import describe | ||
import torch | ||
import torch.nn as nn | ||
from torch.utils.serialization import load_lua | ||
import torchvision.transforms as tvt | ||
|
||
import modelsNIPS | ||
import vgg19_normalized | ||
import vgg19_decoders | ||
|
||
CHECKPOINT_ENCODER_PY = 'models/vgg19_normalized.pth.tar' | ||
LUA_CHECKPOINT_VGG = 'models/vgg_normalised_conv{}_1.t7' | ||
|
||
TEST_IMAGE = 'images/content/in4.jpg' | ||
image_np = imread(TEST_IMAGE).astype(np.float32) | ||
|
||
ENCODERS = modelsNIPS.encoder1, modelsNIPS.encoder2, modelsNIPS.encoder3, modelsNIPS.encoder4, modelsNIPS.encoder5 | ||
DECODERS = modelsNIPS.decoder1, modelsNIPS.decoder2, modelsNIPS.decoder3, modelsNIPS.decoder4, modelsNIPS.decoder5 | ||
|
||
# put image into [0, 1], but don't center or normalize like for other nets | ||
trans = tvt.ToTensor() | ||
image_pt = trans(image_np).unsqueeze(0) | ||
|
||
def convert_encoder(): | ||
vgg_lua = [load_lua(LUA_CHECKPOINT_VGG.format(k)) for k in range(1, 6)] | ||
vgg_lua_ = [e(vl) for e, vl in zip(ENCODERS, vgg_lua)] | ||
|
||
vgg_py = vgg19_normalized.VGG19_normalized() | ||
|
||
matching = { | ||
vgg_py.blocks['conv1_1']: 2, | ||
vgg_py.blocks['conv1_2']: 5, | ||
|
||
vgg_py.blocks['conv2_1']: 9, | ||
vgg_py.blocks['conv2_2']: 12, | ||
|
||
vgg_py.blocks['conv3_1']: 16, | ||
vgg_py.blocks['conv3_2']: 19, | ||
vgg_py.blocks['conv3_3']: 22, | ||
vgg_py.blocks['conv3_4']: 25, | ||
|
||
vgg_py.blocks['conv4_1']: 29, | ||
vgg_py.blocks['conv4_2']: 32, | ||
vgg_py.blocks['conv4_3']: 35, | ||
vgg_py.blocks['conv4_4']: 38, | ||
|
||
vgg_py.blocks['conv5_1']: 42 | ||
} | ||
|
||
for torch_conv, lua_conv_i in matching.items(): | ||
weights = nn.Parameter(vgg_lua[4].get(lua_conv_i).weight.float()) | ||
bias = nn.Parameter(vgg_lua[4].get(lua_conv_i).bias.float()) | ||
torch_conv.load_state_dict({'weight': weights, 'bias': bias}) | ||
|
||
torch.save(vgg_py.state_dict(), CHECKPOINT_ENCODER_PY) | ||
|
||
for k in range(1, 6): | ||
print(f'encoder {k}') | ||
e_lua = vgg_lua_[k-1] | ||
with torch.no_grad(): | ||
al = e_lua(image_pt) | ||
ap = vgg_py(image_pt, targets=f'relu{k}_1') | ||
assert al.shape == ap.shape, (al.shape, ap.shape) | ||
diff = np.abs((al - ap)) | ||
print(describe(diff.flatten())) | ||
print(np.percentile(diff, 99)) | ||
print() | ||
|
||
def convert_decoder(K): | ||
print(f'converting decoder from layer {K}') | ||
decoderK_lua = load_lua(f'models/feature_invertor_conv{K}_1.t7') | ||
decoderK_legacy = DECODERS[K-1](decoderK_lua) | ||
decoderK_py = vgg19_decoders.DECODERS[K-1]() | ||
|
||
matching = { | ||
'conv5_1': -41, | ||
|
||
'conv4_4': -37, | ||
'conv4_3': -34, | ||
'conv4_2': -31, | ||
'conv4_1': -28, | ||
|
||
'conv3_4': -24, | ||
'conv3_3': -21, | ||
'conv3_2': -18, | ||
'conv3_1': -15, | ||
|
||
'conv2_2': -11, | ||
'conv2_1': -8, | ||
|
||
'conv1_2': -4, | ||
'conv1_1': -1 | ||
|
||
} | ||
|
||
for torch_conv, lua_conv_i in matching.items(): | ||
if -lua_conv_i >= len(decoderK_lua): | ||
continue | ||
print(f' {torch_conv}') | ||
weights = nn.Parameter(decoderK_lua.get(lua_conv_i).weight.float()) | ||
bias = nn.Parameter(decoderK_lua.get(lua_conv_i).bias.float()) | ||
decoderK_py.blocks[torch_conv].load_state_dict({'weight': weights, 'bias': bias}) | ||
|
||
torch.save(decoderK_py.state_dict(), f'models/vgg19_normalized_decoder{K}.pth.tar') | ||
|
||
encoder = vgg19_normalized.VGG19_normalized() | ||
encoder.load_state_dict(torch.load(CHECKPOINT_ENCODER_PY)) | ||
|
||
print(f'testing encoding/decoding at layer {K}') | ||
|
||
with torch.no_grad(): | ||
features = encoder(image_pt, targets=f'relu{K}_1') | ||
rgb_legacy = decoderK_legacy(features) | ||
rgb_py = decoderK_py(features) | ||
assert rgb_legacy.shape == rgb_py.shape, (rgb_legacy.shape, rgb_py.shape) | ||
diff = np.abs((rgb_legacy - rgb_py).numpy()) | ||
print(describe(diff.flatten())) | ||
print(np.percentile(diff, 99)) | ||
print() | ||
|
||
def main(): | ||
convert_encoder() | ||
|
||
for K in range(1, 6): | ||
convert_decoder(K) | ||
|
||
print('DONE') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
import torch | ||
import torch.nn as nn | ||
from collections import OrderedDict | ||
|
||
class VGG19Decoder1(nn.Module): | ||
|
||
def __init__(self): | ||
|
||
super(VGG19Decoder1, self).__init__() | ||
|
||
# input shape originally 224 x 224 | ||
|
||
self.blocks = OrderedDict([ # {{{ | ||
('pad1_1', nn.ReflectionPad2d(1)), # 226 x 226 | ||
('conv1_1', nn.Conv2d(64, 3, 3, 1, 0)), # 224 x 224 | ||
]) # }}} | ||
|
||
self.seq = nn.Sequential(self.blocks) | ||
|
||
|
||
def forward(self, x, targets=None): | ||
return self.seq(x) | ||
|
||
class VGG19Decoder2(nn.Module): | ||
|
||
def __init__(self): | ||
|
||
super(VGG19Decoder2, self).__init__() | ||
|
||
# input shape originally 224 x 224 | ||
|
||
self.blocks = OrderedDict([ # {{{ | ||
('pad2_1', nn.ReflectionPad2d(1)),# {{{}}} | ||
('conv2_1', nn.Conv2d(128, 64, 3, 1, 0)), | ||
('relu2_1', nn.ReLU(inplace=True)), # 112 x 112 | ||
|
||
('unpool1', nn.Upsample(scale_factor=2)), # 112 x 112 | ||
('pad1_2', nn.ReflectionPad2d(1)), | ||
('conv1_2', nn.Conv2d(64, 64, 3, 1, 0)), | ||
('relu1_2', nn.ReLU(inplace=True)), # 224 x 224 | ||
('pad1_1', nn.ReflectionPad2d(1)), # 226 x 226 | ||
('conv1_1', nn.Conv2d(64, 3, 3, 1, 0)), # 224 x 224 | ||
]) # }}} | ||
|
||
self.seq = nn.Sequential(self.blocks) | ||
|
||
|
||
def forward(self, x, targets=None): | ||
return self.seq(x) | ||
|
||
class VGG19Decoder3(nn.Module): | ||
|
||
def __init__(self): | ||
|
||
super(VGG19Decoder3, self).__init__() | ||
|
||
# input shape originally 224 x 224 | ||
|
||
self.blocks = OrderedDict([ # {{{ | ||
('pad3_1', nn.ReflectionPad2d(1)), | ||
('conv3_1', nn.Conv2d(256, 128, 3, 1, 0)), | ||
('relu3_1', nn.ReLU(inplace=True)), # 56 x 56 | ||
|
||
('unpool2', nn.Upsample(scale_factor=2)), # 56 x 56 | ||
('pad2_2', nn.ReflectionPad2d(1)), | ||
('conv2_2', nn.Conv2d(128, 128, 3, 1, 0)), | ||
('relu2_2', nn.ReLU(inplace=True)), # 112 x 112 | ||
('pad2_1', nn.ReflectionPad2d(1)),# {{{}}} | ||
('conv2_1', nn.Conv2d(128, 64, 3, 1, 0)), | ||
('relu2_1', nn.ReLU(inplace=True)), # 112 x 112 | ||
|
||
('unpool1', nn.Upsample(scale_factor=2)), # 112 x 112 | ||
('pad1_2', nn.ReflectionPad2d(1)), | ||
('conv1_2', nn.Conv2d(64, 64, 3, 1, 0)), | ||
('relu1_2', nn.ReLU(inplace=True)), # 224 x 224 | ||
('pad1_1', nn.ReflectionPad2d(1)), # 226 x 226 | ||
('conv1_1', nn.Conv2d(64, 3, 3, 1, 0)), # 224 x 224 | ||
]) # }}} | ||
|
||
self.seq = nn.Sequential(self.blocks) | ||
|
||
|
||
def forward(self, x, targets=None): | ||
return self.seq(x) | ||
|
||
class VGG19Decoder4(nn.Module): | ||
|
||
def __init__(self): | ||
|
||
super(VGG19Decoder4, self).__init__() | ||
|
||
# input shape originally 224 x 224 | ||
|
||
self.blocks = OrderedDict([ # {{{ | ||
('pad4_1', nn.ReflectionPad2d(1)), | ||
('conv4_1', nn.Conv2d(512, 256, 3, 1, 0)), | ||
('relu4_1', nn.ReLU(inplace=True)), # 28 x 28 | ||
|
||
('unpool3', nn.Upsample(scale_factor=2)), # 28 x 28 | ||
('pad3_4', nn.ReflectionPad2d(1)), | ||
('conv3_4', nn.Conv2d(256, 256, 3, 1, 0)), | ||
('relu3_4', nn.ReLU(inplace=True)), # 56 x 56 | ||
('pad3_3', nn.ReflectionPad2d(1)), | ||
('conv3_3', nn.Conv2d(256, 256, 3, 1, 0)), | ||
('relu3_3', nn.ReLU(inplace=True)), # 56 x 56 | ||
('pad3_2', nn.ReflectionPad2d(1)), | ||
('conv3_2', nn.Conv2d(256, 256, 3, 1, 0)), | ||
('relu3_2', nn.ReLU(inplace=True)), # 56 x 56 | ||
('pad3_1', nn.ReflectionPad2d(1)), | ||
('conv3_1', nn.Conv2d(256, 128, 3, 1, 0)), | ||
('relu3_1', nn.ReLU(inplace=True)), # 56 x 56 | ||
|
||
('unpool2', nn.Upsample(scale_factor=2)), # 56 x 56 | ||
('pad2_2', nn.ReflectionPad2d(1)), | ||
('conv2_2', nn.Conv2d(128, 128, 3, 1, 0)), | ||
('relu2_2', nn.ReLU(inplace=True)), # 112 x 112 | ||
('pad2_1', nn.ReflectionPad2d(1)),# {{{}}} | ||
('conv2_1', nn.Conv2d(128, 64, 3, 1, 0)), | ||
('relu2_1', nn.ReLU(inplace=True)), # 112 x 112 | ||
|
||
('unpool1', nn.Upsample(scale_factor=2)), # 112 x 112 | ||
('pad1_2', nn.ReflectionPad2d(1)), | ||
('conv1_2', nn.Conv2d(64, 64, 3, 1, 0)), | ||
('relu1_2', nn.ReLU(inplace=True)), # 224 x 224 | ||
('pad1_1', nn.ReflectionPad2d(1)), # 226 x 226 | ||
('conv1_1', nn.Conv2d(64, 3, 3, 1, 0)), # 224 x 224 | ||
]) # }}} | ||
|
||
self.seq = nn.Sequential(self.blocks) | ||
|
||
|
||
def forward(self, x, targets=None): | ||
return self.seq(x) | ||
|
||
class VGG19Decoder5(nn.Module): | ||
|
||
def __init__(self): | ||
|
||
super(VGG19Decoder5, self).__init__() | ||
|
||
# input shape originally 224 x 224 | ||
|
||
self.blocks = OrderedDict([ # {{{ | ||
('pad5_1', nn.ReflectionPad2d(1)), | ||
('conv5_1', nn.Conv2d(512, 512, 3, 1, 0)), | ||
('relu5_1', nn.ReLU(inplace=True)), # 14 x 14 | ||
|
||
('unpool4', nn.Upsample(scale_factor=2)), | ||
('pad4_4', nn.ReflectionPad2d(1)), | ||
('conv4_4', nn.Conv2d(512, 512, 3, 1, 0)), | ||
('relu4_4', nn.ReLU(inplace=True)), # 28 x 28 | ||
('pad4_3', nn.ReflectionPad2d(1)), | ||
('conv4_3', nn.Conv2d(512, 512, 3, 1, 0)), | ||
('relu4_3', nn.ReLU(inplace=True)), # 28 x 28 | ||
('pad4_2', nn.ReflectionPad2d(1)), | ||
('conv4_2', nn.Conv2d(512, 512, 3, 1, 0)), | ||
('relu4_2', nn.ReLU(inplace=True)), # 28 x 28 | ||
('pad4_1', nn.ReflectionPad2d(1)), | ||
('conv4_1', nn.Conv2d(512, 256, 3, 1, 0)), | ||
('relu4_1', nn.ReLU(inplace=True)), # 28 x 28 | ||
|
||
('unpool3', nn.Upsample(scale_factor=2)), # 28 x 28 | ||
('pad3_4', nn.ReflectionPad2d(1)), | ||
('conv3_4', nn.Conv2d(256, 256, 3, 1, 0)), | ||
('relu3_4', nn.ReLU(inplace=True)), # 56 x 56 | ||
('pad3_3', nn.ReflectionPad2d(1)), | ||
('conv3_3', nn.Conv2d(256, 256, 3, 1, 0)), | ||
('relu3_3', nn.ReLU(inplace=True)), # 56 x 56 | ||
('pad3_2', nn.ReflectionPad2d(1)), | ||
('conv3_2', nn.Conv2d(256, 256, 3, 1, 0)), | ||
('relu3_2', nn.ReLU(inplace=True)), # 56 x 56 | ||
('pad3_1', nn.ReflectionPad2d(1)), | ||
('conv3_1', nn.Conv2d(256, 128, 3, 1, 0)), | ||
('relu3_1', nn.ReLU(inplace=True)), # 56 x 56 | ||
|
||
('unpool2', nn.Upsample(scale_factor=2)), # 56 x 56 | ||
('pad2_2', nn.ReflectionPad2d(1)), | ||
('conv2_2', nn.Conv2d(128, 128, 3, 1, 0)), | ||
('relu2_2', nn.ReLU(inplace=True)), # 112 x 112 | ||
('pad2_1', nn.ReflectionPad2d(1)),# {{{}}} | ||
('conv2_1', nn.Conv2d(128, 64, 3, 1, 0)), | ||
('relu2_1', nn.ReLU(inplace=True)), # 112 x 112 | ||
|
||
('unpool1', nn.Upsample(scale_factor=2)), # 112 x 112 | ||
('pad1_2', nn.ReflectionPad2d(1)), | ||
('conv1_2', nn.Conv2d(64, 64, 3, 1, 0)), | ||
('relu1_2', nn.ReLU(inplace=True)), # 224 x 224 | ||
('pad1_1', nn.ReflectionPad2d(1)), # 226 x 226 | ||
('conv1_1', nn.Conv2d(64, 3, 3, 1, 0)), # 224 x 224 | ||
]) # }}} | ||
|
||
self.seq = nn.Sequential(self.blocks) | ||
|
||
|
||
def forward(self, x, targets=None): | ||
return self.seq(x) | ||
|
||
|
||
DECODERS = VGG19Decoder1, VGG19Decoder2, VGG19Decoder3, VGG19Decoder4, VGG19Decoder5 |
Oops, something went wrong.