Skip to content

The code from our paper, Adversarial Example Defense: Ensembles of Weak Defenses are not Strong

License

Notifications You must be signed in to change notification settings

sunblaze-ucb/ensemble-detection-attacks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

# Python dependencies:
enum34
numpy
scipy
tensorflow-gpu
tqdm

For viewing examples, additionally jupyter and matplotlib

# Running the attacks

## Feature squeezing

### Setup, CIFAR-10

    # Set up the pre-trained weights
    ln -s "$PWD/resnet_model" /tmp
    # Extract a batch of images to a numpy array
    cd models
    python resnet/save-unquantized.py \
        --eval_data_path=cifar10/test_batch.bin \
        --log_root=/tmp/resnet_model \
        --eval_dir=/tmp/resnet_model/test \
        --mode=eval \
        --dataset='cifar10' \
        --num_gpus=1

### Color depth reduction, CIFAR-10

    cd models
    python resnet/baseline2-adv.py
    python resnet/precision-adv-test.py

Configure number of bits by changing the parameter to `reduce_precision_tf`, for example, the following reduces to 3 bits (8 levels):

    x_star_quantized = squeeze.reduce_precision_tf(x_star, 8)

### Spatial smoothing, CIFAR-10

    cd models
    python resnet/smoothing-adv.py
    python resnet/smoothing-adv-test.py

Configure the median filter size by changing the parameter to `median_filter`, for example, the following smooths with a 2x2 filter:

    x_star_med = median.median_filter(x_star, 2, 2)

### Detection, CIFAR-10

    cd models
    python resnet/combined-adv.py
    python resnet/combined-adv-test.py

### Color depth reduction, MNIST

    cd mnist_adv
    # 1-bit, 100 images, 5000 iterations, yes (1) use pretrained model
    python quantization_no_gs.py 1 100 5000 1

### Spatial smoothing, MNIST

    cd mnist_adv
    # 3x3, 100 images, 5000 iterations, yes (1) use pretrained model
    python median.py 3 3 100 5000 1

### Detection, MNIST

    cd mnist_adv
    # 1-bit, 2x2, 100 images, 150 iterations, yes (1) use pretrained model, 100 random initializations
    python detection-onemodel.py 1 2 2 100 150 1 100

## Ensemble of specialists

### MNIST

    cd ensemble-specialists
    python save-originals-mnist.py
    python adv-mmist.py
    python adv-mnist-test.py

About

The code from our paper, Adversarial Example Defense: Ensembles of Weak Defenses are not Strong

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published