The goal of {cartomisc} is to store a few useful functions for spatial data manipulation and analysis.
You can install the dev version on Github
# install.packages("remotes")
remotes::install_github("statnmap/cartomisc")
library(dplyr)
library(raster)
library(cartomisc)
library(ggplot2)
library(sf)
To draw multiple raster on the same ggplot2, or to draw raster after other objects (points, polygons, lines)
- data are extracted as a tibble
- data can then be added to a ggplot2 with
geom_tile
# Read some data
slogo <- stack(system.file("external/rlogo.grd", package = "raster"))
slogo
#> class : RasterStack
#> dimensions : 77, 101, 7777, 3 (nrow, ncol, ncell, nlayers)
#> resolution : 1, 1 (x, y)
#> extent : 0, 101, 0, 77 (xmin, xmax, ymin, ymax)
#> crs : +proj=merc +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
#> names : red, green, blue
#> min values : 0, 0, 0
#> max values : 255, 255, 255
# Get partial raster data to plot in ggplot
r.gg <- gplot_data(slogo)
# Remove NA to reduce size of table
r.gg.nona <- r.gg %>%
filter(!is.na(value))
r.gg.nona
#> # A tibble: 23,331 x 4
#> x y value variable
#> <dbl> <dbl> <dbl> <fct>
#> 1 0.5 76.5 255 red
#> 2 1.5 76.5 255 red
#> 3 2.5 76.5 255 red
#> 4 3.5 76.5 255 red
#> 5 4.5 76.5 255 red
#> 6 5.5 76.5 255 red
#> 7 6.5 76.5 255 red
#> 8 7.5 76.5 255 red
#> 9 8.5 76.5 255 red
#> 10 9.5 76.5 255 red
#> # … with 23,321 more rows
# Plot
ggplot(r.gg.nona) +
geom_tile(aes(x = x, y = y, fill = value)) +
scale_fill_gradient("Probability", low = 'yellow', high = 'blue') +
facet_wrap(vars(variable)) +
coord_equal()
Calculate sun position for hillShade
sun_position <- sun_position(2019, 04, 26,
hour = 12, min = 0, sec = 0,
lat = 46.5, long = 6.5
)
sun_position
#> $elevation
#> [1] 56.48539
#>
#> $azimuth
#> [1] 192.4585
Use with hillShade
r <- raster(system.file("external/rlogo.grd", package = "raster"))
# slope and aspect
r_slope <- terrain(r, opt = "slope")
r_aspect <- terrain(r, opt = "aspect")
# hillshade
r_hillshade <- hillShade(r_slope, r_aspect, angle = sun_position$elevation, direction = sun_position$azimuth)
# plot
image(r)
image(r_hillshade, col = grey(seq(0, 1, 0.1), alpha = 0.5), add = TRUE)
- Download some data
# Define where to save the dataset
extraWD <- tempdir()
# Get some data available to anyone
if (!file.exists(file.path(extraWD, "departement.zip"))) {
githubURL <- "https://github.com/statnmap/blog_tips/raw/master/2018-07-14-introduction-to-mapping-with-sf-and-co/data/departement.zip"
download.file(githubURL, file.path(extraWD, "departement.zip"))
unzip(file.path(extraWD, "departement.zip"), exdir = extraWD)
}
- Reduce the dataset to a small region
departements_l93 <- read_sf(dsn = extraWD, layer = "DEPARTEMENT")
# Reduce dataset
bretagne_l93 <- departements_l93 %>%
filter(NOM_REG == "BRETAGNE")
- Calculate the regional buffer area using
regional_seas()
bretagne_regional_2km_l93 <- regional_seas(
x = bretagne_l93,
group = "NOM_DEPT",
dist = units::set_units(30, km), # buffer distance
density = units::set_units(0.5, 1/km) # density of points (the higher, the more precise the region attribution)
)
- Plot the data
ggplot() +
geom_sf(data = bretagne_regional_2km_l93,
aes(colour = NOM_DEPT, fill = NOM_DEPT),
alpha = 0.25) +
geom_sf(data = bretagne_l93,
aes(fill = NOM_DEPT),
colour = "grey20",
alpha = 0.5) +
scale_fill_viridis_d() +
scale_color_viridis_d() +
theme_bw()