Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merging DiVA to Levanter Main #779

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 36 additions & 0 deletions config/diva_flash.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
data:
cache_dir: "gs://diva-flash/processed/llama"
tokenizer: "meta-llama/Llama-3.2-1B-Instruct"
processor: "openai/whisper-large-v3"
configs:
cv:
id: mozilla-foundation/common_voice_17_0
cache_dir: "gs://diva-flash/processed/llama/cv"
name: "en"
text_key: "sentence"
train_split: "train"
validation_split: "validation"
train_weights:
cv: 1.0
model:
type: diva
reference_encoder: "openai/whisper-large-v3"
reference_decoder: "meta-llama/Llama-3.2-1B-Instruct"
use_hf_model_config: true
trainer:
steps_per_eval: 500
mp: p=f32,c=bf16
model_axis_size: 1
per_device_parallelism: -1
train_batch_size: 512
num_train_steps: 4300
checkpointer:
base_path: gs://diva-flash/cv-checkpoints
save_interval: 60m
optimizer:
#learning_rate: 5E-5
learning_rate: 5e-4
weight_decay: 0.1
warmup: 0.01
hf_save_path: gs://diva-flash/librispeech-hf-checkpoints
diva_training: true
14 changes: 14 additions & 0 deletions src/levanter/data/audio.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,10 @@ def __init__(
padding=True,
):
self.feature_extractor: SequenceFeatureExtractor = processor.feature_extractor
if tokenizer.pad_token_id is None:
override_token = list(tokenizer.added_tokens_decoder.items())[-1]
tokenizer.pad_token_id = override_token[0]
tokenizer.pad_tokn = str(override_token[1])
self.bt = BatchTokenizer(
tokenizer,
enforce_bos=enforce_bos,
Expand Down Expand Up @@ -271,6 +275,7 @@ class ProcessedAudioCache(AsyncDataset[AudioTextDict]):

def __init__(self, cache: TreeCache[AudioTextDict]):
self.cache = cache
self._cached_len: Optional[int] = None

async def async_len(self) -> int:
return await self.cache.async_len()
Expand All @@ -284,6 +289,15 @@ def is_finite(self) -> bool:
async def current_len(self) -> Optional[int]:
return await self.cache.current_len()

async def wait_until_len_at_least(self, length: int) -> int:
# length is brutally slow to compute, so we cache it
if self._cached_len is not None and self._cached_len >= length:
return self._cached_len

length = await super().wait_until_len_at_least(length)
self._cached_len = length
return length

async def get_batch(self, indices: Sequence[int]) -> Sequence[AudioTextDict]:
return await self.cache.get_batch(indices)

Expand Down
16 changes: 13 additions & 3 deletions src/levanter/main/train_asr.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
from levanter.compat.hf_checkpoints import HFCompatConfig, ModelWithHfSerializationMixin, save_hf_checkpoint_callback
from levanter.data.audio import AudioIODatasetConfig, AudioMixtureDatasetConfig, AudioTextDataset
from levanter.models.asr_model import ASRConfig, AudioTextExample
from levanter.models.diva import DivaASRModel, diva_connector_only
from levanter.models.whisper import WhisperConfig
from levanter.optim import AdamConfig, OptimizerConfig
from levanter.trainer import Trainer, TrainerConfig
Expand Down Expand Up @@ -45,6 +46,7 @@ class TrainASRConfig:
hf_save_path: Optional[str] = None
hf_upload: Optional[str] = None
hf_save_steps: int = 10000
diva_training: bool = False


def main(config: TrainASRConfig):
Expand Down Expand Up @@ -122,7 +124,7 @@ def compute_loss(
train_dataset = AudioTextDataset(
config.data.train_set(key=data_key),
Pos,
[config.model.Mels, config.model.MelPos],
config.model.AudioPos,
KeyPos,
ignore_index=config.data.pad_token_id,
)
Expand All @@ -136,9 +138,17 @@ def compute_loss(
if vocab_size != Vocab.size:
logger.info(f"Rounding vocab size from {vocab_size} to {Vocab.size} for partitioning")

state = trainer.initial_state(training_key, model_init=lambda: config.model.build_asr(Vocab, key=model_key))
state = trainer.initial_state(
training_key,
model_init=lambda: config.model.build_asr(Vocab, key=model_key),
)

if int(state.step) == 0:
if config.diva_training and config.model.asr_model_type == DivaASRModel:
state = dataclasses.replace(state, model=None)
model = DivaASRModel.init(Vocab, config.model, key=model_key, init_from_submodels=True)
model = named_jit(trainer.mp.cast_to_param, parameter_axis_mapping)(model)
state = dataclasses.replace(state, model=model, is_trainable=diva_connector_only(model))
# TODO: I don't love that we init the model twice, but it's not a big deal i think?
if config.initialize_from_hf:
# initialize from an hf pretrained model
Expand All @@ -164,7 +174,7 @@ def compute_loss(
hax_eval_dataset = AudioTextDataset(
eval_dataset,
Pos,
[config.model.Mels, config.model.MelPos],
config.model.AudioPos,
KeyPos,
ignore_index=config.data.pad_token_id,
)
Expand Down
Loading
Loading