Skip to content

Language Model and Skip-Thought Vectors (Kiros et al. 2015)

Notifications You must be signed in to change notification settings

soskek/skip_thought

Repository files navigation

Sentence-level Language Model and Skip-thought Vector

Training script is as follows:

python -u train.py -g 3 --train train_data --valid valid_data --vocab vocab.t100 -u 512 --layer 1 --dropout 0.1 --batchsize 128 --out output_dir

If you add --language-model, a model to be trained is a sentence-level language model. Otherwise, the model is a skip-thought model by default.

Dataset of training and validation should have one-line-one-sentence format. Training a skip-thought model uses only neighbor sentences in paragraphs, which are separated by blank lines.

Counting-based vocabulary file vocab.t100 can be constructed by the script below:

python construct_vocab.py --data train_data -t 100 --save vocab.t100

For skip-thought vector, see Skip-Thought Vectors, Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler, NIPS 2015.

Computation Cost

Sentence-level Language Model

For 128 sentence pairs in a minibatch, 512-unit LSTM with vocabulary size of 22231 can process 10 iterations per second on 7.5GB GPU memory. On dataset with 4,300,000 pairs, training is performed over 5 epoch in 4.5 hours.

Skip-thought Vector

For 128 sentence pairs in a minibatch, 512-unit GRU with vocabulary size of 22231 can process 2-2.5 iterations per second on 7.5GB GPU memory. On dataset with 4,000,000 pairs, training is performed over 5 epoch in 18-22 hours.

Use wikitext103 as Dataset

sh prepare_rawwikitext.sh
PYTHONIOENCODING=utf-8 python preprocess_spacy.py datasets/wikitext-103-raw/wiki.train.raw > datasets/wikitext-103-raw/spacy_wikitext-103-raw.train
PYTHONIOENCODING=utf-8 python preprocess_spacy.py datasets/wikitext-103-raw/wiki.valid.raw > datasets/wikitext-103-raw/spacy_wikitext-103-raw.valid
PYTHONIOENCODING=utf-8 python preprocess_spacy.py datasets/wikitext-103-raw/wiki.test.raw > datasets/wikitext-103-raw/spacy_wikitext-103-raw.test
PYTHONIOENCODING=utf-8 python preprocess_after_spacy.py datasets/wikitext-103-raw/spacy_wikitext-103-raw.train > datasets/wikitext-103-raw/spacy_wikitext-103-raw.train.after
PYTHONIOENCODING=utf-8 python preprocess_after_spacy.py datasets/wikitext-103-raw/spacy_wikitext-103-raw.valid > datasets/wikitext-103-raw/spacy_wikitext-103-raw.valid.after
PYTHONIOENCODING=utf-8 python preprocess_after_spacy.py datasets/wikitext-103-raw/spacy_wikitext-103-raw.test > datasets/wikitext-103-raw/spacy_wikitext-103-raw.test.after
python construct_vocab.py --data datasets/wikitext-103-raw/spacy_wikitext-103-raw.train.after -t 100 --save datasets/wikitext-103-raw/spacy_wikitext-103-raw.train.after.vocab.t100
python -u train.py -g 3 --train datasets/wikitext-103-raw/spacy_wikitext-103-raw.train.after --valid datasets/wikitext-103-raw/spacy_wikitext-103-raw.valid.after --vocab datasets/wikitext-103-raw/spacy_wikitext-103-raw.train.after.vocab.t100 -u 512 --layer 1 --dropout 0.1 --batchsize 128 --out outs/st.u512.l1.d01.b128


Efficient Softmax Approximation

Implementations of Blackout and Adaptive Softmax for efficiently calculating word distribution for language modeling of very large vocabularies.

LSTM language models are derived from rnnlm_chainer.

Available output layers are as follows

  • Linear + softmax with cross entropy loss. A usual output layer.
  • --share-embedding: A variant using the word embedding matrix shared with the input layer for the output layer.
  • --adaptive-softmax: Adaptive softmax
  • --blackout: BlackOut (BlackOut is not faster on GPU.)

Adaptive Softmax

  • Efficient softmax approximation for GPUs
  • Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, Hervé Jégou, ICML 2017
  • paper
  • authors' Lua code

BlackOut

  • BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies
  • Shihao Ji, S. V. N. Vishwanathan, Nadathur Satish, Michael J. Anderson, Pradeep Dubey, ICLR 2016
  • paper
  • authors' C++ code

How to Run

python -u train.py -g 0

Datasets

  • PennTreeBank
  • Wikitext-2
  • Wikitext-103

For wikitext, run prepare_wikitext.sh for downloading the datasets.

About

Language Model and Skip-Thought Vectors (Kiros et al. 2015)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published