Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support Training With Sparse Matrices #1629

Closed
wants to merge 19 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -129,9 +129,10 @@ dmypy.json
# Editors
.vscode/
.code-workspace*

.idea/
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's cool to add this to .gitignore, but then let's not add all the files in the .idea directory. Ditto with workspace.code-workspace—let's not add it to the repo, but if you want to add that type of file to .gitignore, that's fine.

# Dask
dask-worker-space/

# nohup
nohup.out

8 changes: 8 additions & 0 deletions .idea/.gitignore

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 6 additions & 0 deletions .idea/inspectionProfiles/Project_Default.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 6 additions & 0 deletions .idea/inspectionProfiles/profiles_settings.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

7 changes: 7 additions & 0 deletions .idea/misc.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

8 changes: 8 additions & 0 deletions .idea/modules.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 6 additions & 0 deletions .idea/other.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

25 changes: 25 additions & 0 deletions .idea/snorkel.iml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 6 additions & 0 deletions .idea/vcs.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

107 changes: 78 additions & 29 deletions snorkel/labeling/model/label_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,9 @@
from snorkel.labeling.model.base_labeler import BaseLabeler
from snorkel.labeling.model.graph_utils import get_clique_tree
from snorkel.labeling.model.logger import Logger
from snorkel.labeling.model.sparse_label_model.sparse_label_model_helpers import (
KnownDimensions,
)
from snorkel.types import Config
from snorkel.utils.config_utils import merge_config
from snorkel.utils.lr_schedulers import LRSchedulerConfig
Expand Down Expand Up @@ -188,19 +191,6 @@ def _get_augmented_label_matrix(
# Create a helper data structure which maps cliques (as tuples of member
# sources) --> {start_index, end_index, maximal_cliques}, where
# the last value is a set of indices in this data structure
self.c_data: Dict[int, _CliqueData] = {}
for i in range(self.m):
self.c_data[i] = _CliqueData(
start_index=i * self.cardinality,
end_index=(i + 1) * self.cardinality,
max_cliques=set(
[
j
for j in self.c_tree.nodes()
if i in self.c_tree.node[j]["members"]
]
),
)

L_ind = self._create_L_ind(L)

Expand All @@ -225,6 +215,21 @@ def _get_augmented_label_matrix(
else:
return L_ind

def _calculate_clique_data(self) -> None:
self.c_data: Dict[int, _CliqueData] = {}
for i in range(self.m):
self.c_data[i] = _CliqueData(
start_index=i * self.cardinality,
end_index=(i + 1) * self.cardinality,
max_cliques=set(
[
j
for j in self.c_tree.nodes()
if i in self.c_tree.node[j]["members"]
]
),
)

def _build_mask(self) -> None:
"""Build mask applied to O^{-1}, O for the matrix approx constraint."""
self.mask = torch.ones(self.d, self.d).bool()
Expand Down Expand Up @@ -252,6 +257,10 @@ def _generate_O(self, L: np.ndarray, higher_order: bool = False) -> None:
"""
L_aug = self._get_augmented_label_matrix(L, higher_order=higher_order)
self.d = L_aug.shape[1]
self._generate_O_from_L_aug(L_aug)

def _generate_O_from_L_aug(self, L_aug: np.ndarray) -> None:
"""Generate O from L_aug. Extracted to a seperate method for the sake of testing."""
self.O = (
torch.from_numpy(L_aug.T @ L_aug / self.n).float().to(self.config.device)
)
Expand Down Expand Up @@ -377,7 +386,7 @@ def get_weights(self) -> np.ndarray:
accs[i] = np.diag(cprobs[i, 1:, :] @ self.P.cpu().detach().numpy()).sum()
return np.clip(accs / self.coverage, 1e-6, 1.0)

def predict_proba(self, L: np.ndarray) -> np.ndarray:
def predict_proba(self, L: np.ndarray, is_augmented: bool = False) -> np.ndarray:
r"""Return label probabilities P(Y | \lambda).

Parameters
Expand All @@ -400,9 +409,14 @@ def predict_proba(self, L: np.ndarray) -> np.ndarray:
[0., 1.],
[0., 1.]])
"""
L_shift = L + 1 # convert to {0, 1, ..., k}
self._set_constants(L_shift)
L_aug = self._get_augmented_label_matrix(L_shift)
if not is_augmented:
# This is the usual mode
L_shift = L + 1 # convert to {0, 1, ..., k}
self._set_constants(L_shift) # TODO - Why do we need this here ?
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

self._get_augmented_label_matrix uses at least self.cardinality, which is set in this method. Remove the TODO?

L_aug = self._get_augmented_label_matrix(L_shift)
else:
# The data came in augmented format, and constants are already set
L_aug = L
mu = self.mu.cpu().detach().numpy()
jtm = np.ones(L_aug.shape[1])

Expand Down Expand Up @@ -580,15 +594,35 @@ def _set_class_balance(
)
self.P = torch.diag(torch.from_numpy(self.p)).float().to(self.config.device)

def _set_constants(self, L: np.ndarray) -> None:
self.n, self.m = L.shape
def _set_constants(
self,
L: Optional[np.ndarray] = None,
known_dimensions: Optional[KnownDimensions] = None,
) -> None:
if L is None and known_dimensions is None:
raise ValueError(
"You must either provide a LabelMatrix or specify known_dimensions"
)
elif known_dimensions is not None:
self.n = known_dimensions.num_examples
self.m = known_dimensions.num_functions
self.d = known_dimensions.num_events
self.cardinality = known_dimensions.num_classes
elif L is not None:
# We know L is not none, but the linter can't figure it out ...
self.n, self.m = L.shape
else:
raise ValueError(
"Something impossible happened. This is here for the sake of the linter"
)
if self.m < 3:
raise ValueError("L_train should have at least 3 labeling functions")
self.t = 1

def _create_tree(self) -> None:
nodes = range(self.m)
self.c_tree = get_clique_tree(nodes, [])
self._calculate_clique_data()

def _execute_logging(self, loss: torch.Tensor) -> Metrics:
self.eval()
Expand All @@ -607,7 +641,6 @@ def _execute_logging(self, loss: torch.Tensor) -> Metrics:
# Reset running loss and examples counts
self.running_loss = 0.0
self.running_examples = 0

self.train()
return metrics_dict

Expand Down Expand Up @@ -861,13 +894,7 @@ def fit(
>>> label_model.fit(L, class_balance=[0.7, 0.3], n_epochs=200, l2=0.4)
"""
# Set random seed
self.train_config: TrainConfig = merge_config( # type:ignore
TrainConfig(), kwargs # type:ignore
)
# Update base config so that it includes all parameters
random.seed(self.train_config.seed)
np.random.seed(self.train_config.seed)
torch.manual_seed(self.train_config.seed)
self._set_config_and_seed(**kwargs)

L_shift = L_train + 1 # convert to {0, 1, ..., k}
if L_shift.max() > self.cardinality:
Expand All @@ -876,15 +903,37 @@ def fit(
)

self._set_constants(L_shift)
self._set_class_balance(class_balance, Y_dev)
self._create_tree()
self._training_preamble(class_balance=class_balance, Y_dev=Y_dev, **kwargs)
lf_analysis = LFAnalysis(L_train)
self.coverage = lf_analysis.lf_coverages()

# Compute O and initialize params
if self.config.verbose: # pragma: no cover
logging.info("Computing O...")
self._generate_O(L_shift)
self._training_loop()

def _training_preamble(
self,
Y_dev: Optional[np.ndarray] = None,
class_balance: Optional[List[float]] = None,
**kwargs: Any
) -> None:
"""Perform the training preamble, regardless of user input."""
np.random.seed(self.train_config.seed)
torch.manual_seed(self.train_config.seed)
self._set_class_balance(class_balance, Y_dev)
self._create_tree()

def _set_config_and_seed(self, **kwargs: Any) -> None:
self.train_config: TrainConfig = merge_config( # type:ignore
TrainConfig(), kwargs # type:ignore
)
# Update base config so that it includes all parameters
random.seed(self.train_config.seed)

def _training_loop(self) -> None:
"""Perform training logic that is shared across different fit methods, irrespective of the user input format."""
self._init_params()

# Estimate \mu
Expand Down
Empty file.
Loading