-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
64b99d3
commit 713f5f1
Showing
3 changed files
with
355 additions
and
2,259 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,349 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "Untitled1.ipynb", | ||
"version": "0.3.2", | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"metadata": { | ||
"id": "C7Ppv-uc9DWM", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"import torch.nn.functional as F\n", | ||
"from elastic_weight_consolidation import ElasticWeightConsolidation" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "qe22sCzx9DWQ", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"from torch.utils.data import Dataset, DataLoader\n", | ||
"from torchvision import datasets, transforms" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "Y_LMkmXG9DWV", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"mnist_train = datasets.MNIST(\"../data\", train=True, download=True, transform=transforms.ToTensor())\n", | ||
"mnist_test = datasets.MNIST(\"../data\", train=False, download=True, transform=transforms.ToTensor())\n", | ||
"train_loader = DataLoader(mnist_train, batch_size = 100, shuffle=True)\n", | ||
"test_loader = DataLoader(mnist_test, batch_size = 100, shuffle=False)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "YrKlgL6t9zJe", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"class LinearLayer(nn.Module):\n", | ||
" def __init__(self, input_dim, output_dim, act='relu', use_bn=False):\n", | ||
" super(LinearLayer, self).__init__()\n", | ||
" self.use_bn = use_bn\n", | ||
" self.lin = nn.Linear(input_dim, output_dim)\n", | ||
" self.act = nn.ReLU() if act == 'relu' else act\n", | ||
" if use_bn:\n", | ||
" self.bn = nn.BatchNorm1d(output_dim)\n", | ||
" def forward(self, x):\n", | ||
" if self.use_bn:\n", | ||
" return self.bn(self.act(self.lin(x)))\n", | ||
" return self.act(self.lin(x))\n", | ||
"\n", | ||
"class Flatten(nn.Module):\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" return x.view(x.shape[0], -1)\n" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "44d9meQa9DWc", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"class BaseModel(nn.Module):\n", | ||
" \n", | ||
" def __init__(self, num_inputs, num_hidden, num_outputs):\n", | ||
" super(BaseModel, self).__init__()\n", | ||
" self.f1 = Flatten()\n", | ||
" self.lin1 = LinearLayer(num_inputs, num_hidden, use_bn=True)\n", | ||
" self.lin2 = LinearLayer(num_hidden, num_hidden, use_bn=True)\n", | ||
" self.lin3 = nn.Linear(num_hidden, num_outputs)\n", | ||
" \n", | ||
" def forward(self, x):\n", | ||
" return self.lin3(self.lin2(self.lin1(self.f1(x))))" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "_17XW9359DWf", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"crit = nn.CrossEntropyLoss()" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "SpBrwjk89DWi", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"ewc = ElasticWeightConsolidation(BaseModel(28 * 28, 100, 10), crit=crit, lr=1e-4)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "CMQGk-E19DWl", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"from tqdm import tqdm" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "gmbrFvJm9DWn", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 87 | ||
}, | ||
"outputId": "db2ca466-76dc-4d1c-fa32-8dc672a12a8f" | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"for _ in range(4):\n", | ||
" for input, target in tqdm(train_loader):\n", | ||
" ewc.forward_backward_update(input, target)" | ||
], | ||
"execution_count": 41, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"100%|██████████| 600/600 [00:07<00:00, 75.32it/s]\n", | ||
"100%|██████████| 600/600 [00:07<00:00, 76.07it/s]\n", | ||
"100%|██████████| 600/600 [00:08<00:00, 74.12it/s]\n", | ||
"100%|██████████| 600/600 [00:08<00:00, 73.90it/s]\n" | ||
], | ||
"name": "stderr" | ||
} | ||
] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "8HwlRJkI9DWt", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"ewc.register_ewc_params(mnist_train, 100, 300)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "NvJW68IB9DWw", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"f_mnist_train = datasets.FashionMNIST(\"../data\", train=True, download=True, transform=transforms.ToTensor())\n", | ||
"f_mnist_test = datasets.FashionMNIST(\"../data\", train=False, download=True, transform=transforms.ToTensor())\n", | ||
"f_train_loader = DataLoader(f_mnist_train, batch_size = 100, shuffle=True)\n", | ||
"f_test_loader = DataLoader(f_mnist_test, batch_size = 100, shuffle=False)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "SzQbVudz9DWy", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 87 | ||
}, | ||
"outputId": "bdcb55c5-d40a-4a7a-dca5-4652076e8033" | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"for _ in range(4):\n", | ||
" for input, target in tqdm(f_train_loader):\n", | ||
" ewc.forward_backward_update(input, target)" | ||
], | ||
"execution_count": 44, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"100%|██████████| 600/600 [00:09<00:00, 62.14it/s]\n", | ||
"100%|██████████| 600/600 [00:09<00:00, 66.03it/s]\n", | ||
"100%|██████████| 600/600 [00:09<00:00, 66.56it/s]\n", | ||
"100%|██████████| 600/600 [00:09<00:00, 65.95it/s]\n" | ||
], | ||
"name": "stderr" | ||
} | ||
] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "L8n6PX5w9DW2", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"ewc.register_ewc_params(f_mnist_train, 100, 300)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "fUqvbeO79DW4", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"def accu(model, dataloader):\n", | ||
" model = model.eval()\n", | ||
" acc = 0\n", | ||
" for input, target in dataloader:\n", | ||
" o = model(input)\n", | ||
" acc += (o.argmax(dim=1).long() == target).float().mean()\n", | ||
" return acc / len(dataloader)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "aOIOBZhp9DW6", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 35 | ||
}, | ||
"outputId": "b260dee2-3c7d-4a9f-be83-8ac412a32f5c" | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"accu(ewc.model, f_test_loader)" | ||
], | ||
"execution_count": 47, | ||
"outputs": [ | ||
{ | ||
"output_type": "execute_result", | ||
"data": { | ||
"text/plain": [ | ||
"tensor(0.8188)" | ||
] | ||
}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": 47 | ||
} | ||
] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "hFdW_33Y9DW-", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 35 | ||
}, | ||
"outputId": "38b2dad0-bfb4-48e5-ec01-d848cc8c1593" | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"accu(ewc.model, test_loader)" | ||
], | ||
"execution_count": 48, | ||
"outputs": [ | ||
{ | ||
"output_type": "execute_result", | ||
"data": { | ||
"text/plain": [ | ||
"tensor(0.7027)" | ||
] | ||
}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": 48 | ||
} | ||
] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "Fkni7xkY-tRI", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
} | ||
] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.