- OS: Ubuntu 18.04
- Python: Python 3.7
- nvidia :
- cuda: 10.1
- cudnn: 7.6.1
- Other reference requirements
1.Create a conda virtual environment and activate it
conda create -n pytorch_1.6 python=3.7
source activate pytorch_1.6
2.Install PyTorch and torchvision following the official instructions
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
3.Install build requirements
pip3 install -r requirements.txt
4.Install DCN
cd DCNv2-pytorch_1.6
python3 setup.py build develop # build
python3 test.py # run examples and check
# Modify the root path of training dataset and model etc.
python main.py --n_GPUs 4 --lr 0.0002 --decay 100-200 --save kbnet --model KBNet --n_feats 128 --n_resblocks 8 --n_resgroups 5 --batch_size 32 --burst_size 8 --patch_size 256 --scale 4 --loss 1*L1
- Data preparation
# Modify the output path of test dataset in make_validation_set.py - root = '../test_set_3.2_4.8'
python make_validation_set.py
- Run models on test dataset:
# Modify the path of test dataset and the path of the trained model
python test.py --root ../test_set_0_1.6 --n_GPUs 1 --model KBNet --n_feats 128 --n_resblocks 8 --n_resgroups 5 --batch_size 64 --burst_size 2 --scale 4 --pre_train ../train_log/KBNet/real_models/kbnet/KBNetbest_epoch.pth
If EBSR helps your research or work, please consider citing EBSR. The following is a BibTeX reference.
@article{lian2021kernel,
title={Kernel-aware Burst Blind Super-Resolution},
author={Lian, Wenyi and Peng, Shanglian},
journal={arXiv preprint arXiv:2112.07315},
year={2021}
}