-
Notifications
You must be signed in to change notification settings - Fork 146
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
96c2031
commit 8b2c78e
Showing
6 changed files
with
184 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import numpy as np | ||
from typing import Optional | ||
from time import perf_counter | ||
from simba.utils.enums import Formats | ||
from simba.utils.checks import check_valid_array, check_float | ||
from numba import cuda | ||
from simba.data_processors.cuda.utils import _cuda_mean, _cuda_std | ||
|
||
|
||
THREADS_PER_BLOCK = 1024 | ||
|
||
@cuda.jit(device=True) | ||
def _count_at_threshold(x: np.ndarray, inverse: int, threshold: float): | ||
results = 0 | ||
for i in range(x.shape[0]): | ||
if inverse[0] == 0: | ||
if x[i] > threshold[0]: | ||
results += 1 | ||
else: | ||
if x[i] < threshold[0]: | ||
results += 1 | ||
return results | ||
|
||
@cuda.jit() | ||
def _sliding_crossings_kernal(data, time, threshold, inverse, results): | ||
r = cuda.grid(1) | ||
l = int(r - time[0]) | ||
if r > data.shape[0] or r < 0: | ||
return | ||
elif l > data.shape[0] or l < 0: | ||
return | ||
else: | ||
sample = data[l:r] | ||
results[r-1] = _count_at_threshold(sample, inverse, threshold) | ||
|
||
def sliding_threshold(data: np.ndarray, time_window: float, sample_rate: float, value: float, inverse: Optional[bool] = False) -> np.ndarray: | ||
""" | ||
Compute the count of observations above or below threshold crossings over a sliding window using GPU acceleration. | ||
:param np.ndarray data: Input data array. | ||
:param float time_window: Size of the sliding window in seconds. | ||
:param float sample_rate: Number of samples per second in the data. | ||
:param float value: Threshold value. | ||
:param Optional[bool] inverse: If False, counts values above the threshold. If True, counts values below. | ||
:return: Array containing count of threshold crossings per window. | ||
:rtype: np.ndarray | ||
""" | ||
|
||
check_float(name='sample_rate', value=sample_rate, min_value=10e-6) | ||
check_float(name='sample_rate', value=sample_rate, min_value=10e-6) | ||
check_float(name='time_window', value=time_window, min_value=10e-6) | ||
check_valid_array(data=data, source=sliding_threshold.__name__, accepted_ndims=(1,), accepted_dtypes=Formats.NUMERIC_DTYPES.value) | ||
|
||
data_dev = cuda.to_device(data) | ||
time_window_frames = np.array([np.ceil(time_window * sample_rate)]) | ||
time_window_frames_dev = cuda.to_device(time_window_frames) | ||
value = np.array([value]) | ||
invert = np.array([0]) | ||
if inverse: invert[0] = 1 | ||
value_dev = cuda.to_device(value) | ||
inverse_dev = cuda.to_device(invert) | ||
bpg = (data.shape[0] + (THREADS_PER_BLOCK - 1)) // THREADS_PER_BLOCK | ||
results = cuda.device_array(shape=(data.shape), dtype=np.int32) | ||
_sliding_crossings_kernal[bpg, THREADS_PER_BLOCK](data_dev, time_window_frames_dev, value_dev, inverse_dev, results) | ||
return results.copy_to_host() | ||
|
||
@cuda.jit() | ||
def _sliding_percent_beyond_n_std_kernel(data, time, std_n, results): | ||
r = cuda.grid(1) | ||
l = int(r - time[0]) | ||
if r > data.shape[0] or r < 0: | ||
return | ||
elif l > data.shape[0] or l < 0: | ||
return | ||
else: | ||
sample = data[l:r] | ||
m = _cuda_mean(sample) | ||
std_val = _cuda_std(sample, m) * std_n[0] | ||
cnt = 0 | ||
for i in range(sample.shape[0]): | ||
|
||
if (sample[i] > (m + std_val)) or (sample[i] < (m - std_val)): | ||
print(sample[i], m + std_val) | ||
cnt += 1 | ||
results[r-1] = cnt | ||
|
||
def sliding_percent_beyond_n_std(data: np.ndarray, time_window: float, sample_rate: float, value: float) -> np.ndarray: | ||
""" | ||
Computes the percentage of points in each sliding window of `data` that fall beyond | ||
`n` standard deviations from the mean of that window. | ||
This function uses GPU acceleration via CUDA to efficiently compute the result over large datasets. | ||
:param np.ndarray data: The input 1D data array for which the sliding window computation is to be performed. | ||
:param float time_window: The length of the time window in seconds. | ||
:param float sample_rate: The sample rate of the data in Hz (samples per second). | ||
:param float value: The number of standard deviations beyond which to count data points. | ||
:return: An array containing the count of data points beyond `n` standard deviations for each window. | ||
:rtype: np.ndarray | ||
:example: | ||
>>> data = np.random.randint(0, 100, (100,)) | ||
>>> results = sliding_percent_beyond_n_std(data=data, time_window=1, sample_rate=10, value=2) | ||
""" | ||
|
||
data_dev = cuda.to_device(data) | ||
time_window_frames = np.array([np.ceil(time_window * sample_rate)]) | ||
time_window_frames_dev = cuda.to_device(time_window_frames) | ||
value = np.array([value]) | ||
value_dev = cuda.to_device(value) | ||
bpg = (data.shape[0] + (THREADS_PER_BLOCK - 1)) // THREADS_PER_BLOCK | ||
results = cuda.device_array(shape=(data.shape), dtype=np.int32) | ||
_sliding_percent_beyond_n_std_kernel[bpg, THREADS_PER_BLOCK](data_dev, time_window_frames_dev, value_dev, results) | ||
return results.copy_to_host() | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
import numpy as np | ||
from numba import cuda | ||
import math | ||
|
||
@cuda.jit(device=True) | ||
def _cuda_sum(x: np.ndarray): | ||
s = 0 | ||
for i in range(x.shape[0]): | ||
s += x[i] | ||
return s | ||
|
||
|
||
@cuda.jit(device=True) | ||
def _cuda_sin(x, t): | ||
for i in range(x.shape[0]): | ||
v = math.sin(x[i]) | ||
t[i] = v | ||
return t | ||
|
||
@cuda.jit(device=True) | ||
def _cuda_cos(x, t): | ||
for i in range(x.shape[0]): | ||
v = math.cos(x[i]) | ||
t[i] = v | ||
return t | ||
|
||
@cuda.jit(device=True) | ||
def _cuda_std(x: np.ndarray, x_hat: float): | ||
std = 0 | ||
for i in range(x.shape[0]): | ||
std += (x[0] - x_hat) ** 2 | ||
return std | ||
|
||
@cuda.jit(device=True) | ||
def _rad2deg(x): | ||
return x * (180/math.pi) | ||
|
||
@cuda.jit(device=True) | ||
def _cross_test(x, y, x1, y1, x2, y2): | ||
cross = (x - x1) * (y2 - y1) - (y - y1) * (x2 - x1) | ||
return cross < 0 | ||
|
||
|
||
@cuda.jit(device=True) | ||
def _cuda_mean(x): | ||
s = 0 | ||
for i in range(x.shape[0]): | ||
s += x[i] | ||
return s / x.shape[0] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters