Skip to content

Commit

Permalink
Encoded DeepGPs. (#873)
Browse files Browse the repository at this point in the history
avullo authored Sep 18, 2024
1 parent 1dd0857 commit ba65aea
Showing 4 changed files with 52 additions and 22 deletions.
19 changes: 15 additions & 4 deletions tests/unit/models/gpflux/test_interface.py
Original file line number Diff line number Diff line change
@@ -20,7 +20,6 @@
import numpy.testing as npt
import pytest
import tensorflow as tf
from check_shapes import inherit_check_shapes
from gpflow.conditionals.util import sample_mvn
from gpflow.keras import tf_keras
from gpflux.helpers import construct_basic_inducing_variables, construct_basic_kernel
@@ -30,6 +29,7 @@
from tests.util.misc import random_seed
from trieste.data import Dataset
from trieste.models.gpflux import GPfluxPredictor
from trieste.space import CategoricalSearchSpace, EncoderFunction, one_hot_encoder
from trieste.types import TensorType


@@ -38,8 +38,9 @@ def __init__(
self,
optimizer: tf_keras.optimizers.Optimizer | None = None,
likelihood: gpflow.likelihoods.Likelihood = gpflow.likelihoods.Gaussian(0.01),
encoder: EncoderFunction | None = None,
):
super().__init__(optimizer=optimizer)
super().__init__(optimizer=optimizer, encoder=encoder)

if optimizer is None:
self._optimizer = tf_keras.optimizers.Adam()
@@ -61,8 +62,7 @@ def model_keras(self) -> tf_keras.Model:
def optimizer(self) -> tf_keras.optimizers.Optimizer:
return self._optimizer

@inherit_check_shapes
def sample(self, query_points: TensorType, num_samples: int) -> TensorType:
def sample_encoded(self, query_points: TensorType, num_samples: int) -> TensorType:
# Taken from GPflow implementation of `GPModel.predict_f_samples` in gpflow.models.model
mean, cov = self._model_gpflux.predict_f(query_points, full_cov=True)
mean_for_sample = tf.linalg.adjoint(mean)
@@ -152,3 +152,14 @@ def test_gpflux_predictor_get_observation_noise_raises_for_non_gaussian_likeliho

with pytest.raises(NotImplementedError):
model.get_observation_noise()


def test_gpflux_categorical_predict() -> None:
search_space = CategoricalSearchSpace(["Red", "Green", "Blue"])
query_points = search_space.sample(10)
model = _QuadraticPredictor(encoder=one_hot_encoder(search_space))
mean, variance = model.predict(query_points)
assert mean.shape == [10, 1]
assert variance.shape == [10, 1]
npt.assert_allclose(mean, [[1.0]] * 10, rtol=0.01)
npt.assert_allclose(variance, [[1.0]] * 10, rtol=0.01)
29 changes: 20 additions & 9 deletions trieste/models/gpflux/interface.py
Original file line number Diff line number Diff line change
@@ -16,33 +16,46 @@

from abc import ABC, abstractmethod

from check_shapes import inherit_check_shapes
from gpflow.base import Module
from gpflow.keras import tf_keras

from ...space import EncoderFunction
from ...types import TensorType
from ..interfaces import SupportsGetObservationNoise, SupportsPredictY
from ..interfaces import EncodedSupportsPredictY, SupportsGetObservationNoise
from ..optimizer import KerasOptimizer


class GPfluxPredictor(SupportsGetObservationNoise, SupportsPredictY, ABC):
class GPfluxPredictor(SupportsGetObservationNoise, EncodedSupportsPredictY, ABC):
"""
A trainable wrapper for a GPflux deep Gaussian process model. The code assumes subclasses
will use the Keras `fit` method for training, and so they should provide access to both a
`model_keras` and `model_gpflux`.
"""

def __init__(self, optimizer: KerasOptimizer | None = None):
def __init__(
self, optimizer: KerasOptimizer | None = None, encoder: EncoderFunction | None = None
):
"""
:param optimizer: The optimizer wrapper containing the optimizer with which to train the
model and arguments for the wrapper and the optimizer. The optimizer must
be an instance of a :class:`~tf.optimizers.Optimizer`. Defaults to
:class:`~tf.optimizers.Adam` optimizer with 0.01 learning rate.
:param encoder: Optional encoder with which to transform query points before
generating predictions.
"""
if optimizer is None:
optimizer = KerasOptimizer(tf_keras.optimizers.Adam(0.01))

self._optimizer = optimizer
self._encoder = encoder

@property
def encoder(self) -> EncoderFunction | None:
return self._encoder

@encoder.setter
def encoder(self, encoder: EncoderFunction | None) -> None:
self._encoder = encoder

@property
@abstractmethod
@@ -59,18 +72,16 @@ def optimizer(self) -> KerasOptimizer:
"""The optimizer wrapper for training the model."""
return self._optimizer

@inherit_check_shapes
def predict(self, query_points: TensorType) -> tuple[TensorType, TensorType]:
def predict_encoded(self, query_points: TensorType) -> tuple[TensorType, TensorType]:
"""Note: unless otherwise noted, this returns the mean and variance of the last layer
conditioned on one sample from the previous layers."""
return self.model_gpflux.predict_f(query_points)

@abstractmethod
def sample(self, query_points: TensorType, num_samples: int) -> TensorType:
def sample_encoded(self, query_points: TensorType, num_samples: int) -> TensorType:
raise NotImplementedError

@inherit_check_shapes
def predict_y(self, query_points: TensorType) -> tuple[TensorType, TensorType]:
def predict_y_encoded(self, query_points: TensorType) -> tuple[TensorType, TensorType]:
"""Note: unless otherwise noted, this will return the prediction conditioned on one sample
from the lower layers."""
f_mean, f_var = self.model_gpflux.predict_f(query_points)
18 changes: 10 additions & 8 deletions trieste/models/gpflux/models.py
Original file line number Diff line number Diff line change
@@ -19,7 +19,6 @@
import dill
import gpflow
import tensorflow as tf
from check_shapes import inherit_check_shapes
from gpflow.inducing_variables import InducingPoints
from gpflow.keras import tf_keras
from gpflux.layers import GPLayer, LatentVariableLayer
@@ -28,12 +27,13 @@

from ... import logging
from ...data import Dataset
from ...space import EncoderFunction
from ...types import TensorType
from ..interfaces import (
EncodedTrainableProbabilisticModel,
HasReparamSampler,
HasTrajectorySampler,
ReparametrizationSampler,
TrainableProbabilisticModel,
TrajectorySampler,
)
from ..optimizer import KerasOptimizer
@@ -50,7 +50,7 @@


class DeepGaussianProcess(
GPfluxPredictor, TrainableProbabilisticModel, HasReparamSampler, HasTrajectorySampler
GPfluxPredictor, EncodedTrainableProbabilisticModel, HasReparamSampler, HasTrajectorySampler
):
"""
A :class:`TrainableProbabilisticModel` wrapper for a GPflux :class:`~gpflux.models.DeepGP` with
@@ -65,6 +65,7 @@ def __init__(
num_rff_features: int = 1000,
continuous_optimisation: bool = True,
compile_args: Optional[Mapping[str, Any]] = None,
encoder: EncoderFunction | None = None,
):
"""
:param model: The underlying GPflux deep Gaussian process model. Passing in a named closure
@@ -88,6 +89,8 @@ def __init__(
See https://keras.io/api/models/model_training_apis/#compile-method for a
list of possible arguments. The ``optimizer`` and ``metrics`` arguments
must not be included.
:param encoder: Optional encoder with which to transform query points before
generating predictions.
:raise ValueError: If ``model`` has unsupported layers, ``num_rff_features`` is less than 0,
if the ``optimizer`` is not of a supported type, or `compile_args` contains
disallowed arguments.
@@ -113,7 +116,7 @@ def __init__(
f"`LatentVariableLayer`, received {type(layer)} instead."
)

super().__init__(optimizer)
super().__init__(optimizer, encoder)

if num_rff_features <= 0:
raise ValueError(
@@ -304,8 +307,7 @@ def model_gpflux(self) -> DeepGP:
def model_keras(self) -> tf_keras.Model:
return self._model_keras

@inherit_check_shapes
def sample(self, query_points: TensorType, num_samples: int) -> TensorType:
def sample_encoded(self, query_points: TensorType, num_samples: int) -> TensorType:
trajectory = self.trajectory_sampler().get_trajectory()
expanded_query_points = tf.expand_dims(query_points, -2) # [N, 1, D]
tiled_query_points = tf.tile(expanded_query_points, [1, num_samples, 1]) # [N, S, D]
@@ -329,7 +331,7 @@ def trajectory_sampler(self) -> TrajectorySampler[GPfluxPredictor]:
"""
return DeepGaussianProcessDecoupledTrajectorySampler(self, self._num_rff_features)

def update(self, dataset: Dataset) -> None:
def update_encoded(self, dataset: Dataset) -> None:
inputs = dataset.query_points
new_num_data = inputs.shape[0]
self.model_gpflux.num_data = new_num_data
@@ -366,7 +368,7 @@ def update(self, dataset: Dataset) -> None:

inputs = layer(inputs)

def optimize(self, dataset: Dataset) -> tf_keras.callbacks.History:
def optimize_encoded(self, dataset: Dataset) -> tf_keras.callbacks.History:
"""
Optimize the model with the specified `dataset`.
:param dataset: The data with which to optimize the `model`.
8 changes: 7 additions & 1 deletion trieste/models/gpflux/sampler.py
Original file line number Diff line number Diff line change
@@ -72,6 +72,7 @@ def __init__(self, sample_size: int, model: GPfluxPredictor):
)
for _ in range(len(self._model_gpflux.f_layers))
]
self._encode = lambda x: model.encode(x)

@property
def _model_gpflux(self) -> tf.Module:
@@ -96,7 +97,9 @@ def sample(self, at: TensorType, *, jitter: float = DEFAULTS.JITTER) -> TensorTy
tf.debugging.assert_shapes([(at, [..., 1, None])])
tf.debugging.assert_greater_equal(jitter, 0.0)

samples = tf.repeat(at[..., None, :, :], self._sample_size, axis=-3) # [..., S, 1, D]
samples = tf.repeat(
self._encode(at[..., None, :, :]), self._sample_size, axis=-3
) # [..., S, 1, D]
for i, layer in enumerate(self._model_gpflux.f_layers):
if isinstance(layer, LatentVariableLayer):
if not self._initialized:
@@ -477,6 +480,8 @@ def __init__(self, model: GPfluxPredictor, num_features: int):
for i in range(len(model.model_gpflux.f_layers))
]

self._encode = lambda x: model.encode(x)

@tf.function
def __call__(self, x: TensorType) -> TensorType:
"""
@@ -486,6 +491,7 @@ def __call__(self, x: TensorType) -> TensorType:
the batch dimension, and `D` is the input dimensionality.
:return: Trajectory samples with shape `[N, B, L]`, where `L` is the number of outputs.
"""
x = self._encode(x)
for layer in self._sampling_layers:
x = layer(x)
return x

0 comments on commit ba65aea

Please sign in to comment.