-
Notifications
You must be signed in to change notification settings - Fork 13
Frameworks comparison
Name | Pregel[1] | Distributed GraphLab[2] | PowerGraph[3] | Restreaming Partitioning[8] | X-stream[4] | Fennel[5] | S-Powergraph[6] | Linear Embedding[7] |
---|---|---|---|---|---|---|---|---|
year | 2010 | 2011 | 2012 | 2013 | 2013 | 2014 | 2015 | 2016 |
Bounded/Unbounded | Bounded | Bounded | Bounded | Bounded | Bounded | Unbounded | Unbounded | Unbounded |
Dynamic state changes? | Yes, Edges and topology changes | Yes | Yes | Yes | No, Only the data stored in a vertices changes | Yes | Yes | Yes |
vertex-cut/edge-cut | edge-cut | edge-cut | vertex-cut | edge-cut | edge-cut | edge-cut | vertex-cut | edge-cut |
Considering power-law distribution? | No | Tests with natural graphs | Yes | Yes( Social graphs ) | No | Tests with natural graphs | Yes | Tests with natural graphs |
Considering other natural graph models? | No | No | No | Yes( web graphs ) | No | No | No | No |
Stream partitioning? | No | No | No | Yes | Yes, edges | Yes | Yes | Yes |
Comments | Partitioning depends on used hash function | When the same graph ( or approx. ) repeatedly streamed | Partitions the vertices, then streaming edges from storage |
###References
[1] Malewicz, G., Austern, M. H., Bik, A. J. ., Dehnert, J. C., Horn, I., Leiser, N., & Czajkowski, G. (2010). Pregel: a system for large-scale graph processing. Proceedings of the 2010 International Conference on Management of Data - SIGMOD ’10, 135–146. http://doi.org/10.1145/1807167.1807184
[2] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., & Guestrin, C. (2011). Distributed GraphLab: A Distributed Framework for Machine Learning in the Cloud, 716–727. http://doi.org/10.14778/2212351.2212354
[3] Gonzalez, J., Low, Y., & Gu, H. (2012). Powergraph: Distributed graph-parallel computation on natural graphs. OSDI’12 Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, 17–30. Retrieved from https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
[4] Roy, A., Mihailovic, I., & Zwaenepoel, W. (2013). X-stream: edge-centric graph processing using streaming partitions. The Twenty-Fourth ACM Symposium on Operating Systems Principles, 472 – 488. http://doi.org/10.1145/2517349.2522740
[5] Tsourakakis, C., Gkantsidis, C., Radunovic, B., & Vojnovic, M. (2014). Fennel: Streaming graph partitioning for massive scale graphs. Proceedings of the 7th ACM International Conference on Web Search and Data Mining, 333–342. http://doi.org/10.1145/2556195.2556213
[6] Xie, C., Li, W.-J., & Zhang, Z. (2015). S-PowerGraph: Streaming Graph Partitioning for Natural Graphs by Vertex-Cut. Retrieved from http://arxiv.org/abs/1511.02586
[7] Aydin, K., Bateni, M., & Mirrokni, V. (2016). Distributed Balanced Partitioning via Linear Embedding, 387–396. http://doi.org/10.1145/2835776.2835829