Skip to content

Commit

Permalink
docs: Correct fixed_params type to tuple or list (#2420)
Browse files Browse the repository at this point in the history
* `fixed_params` is an iterable that is of type tuple or list. Though
  operations on it may support tensor types, not all operations will
  necessarily be supported and so the docs should not list it as being
  a tensor.
  • Loading branch information
matthewfeickert authored Jan 5, 2024
1 parent 5154cda commit f2ce224
Show file tree
Hide file tree
Showing 5 changed files with 23 additions and 23 deletions.
4 changes: 2 additions & 2 deletions src/pyhf/infer/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,8 +61,8 @@ def hypotest(
par_bounds (:obj:`tensor`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`tensor` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
calctype (:obj:`str`): The calculator to create. Choose either 'asymptotics' (default) or 'toybased'.
return_tail_probs (:obj:`bool`): Bool for returning :math:`\mathrm{CL}_{s+b}` and :math:`\mathrm{CL}_{b}`
return_expected (:obj:`bool`): Bool for returning :math:`\mathrm{CL}_{\mathrm{exp}}`
Expand Down
12 changes: 6 additions & 6 deletions src/pyhf/infer/calculators.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,8 +61,8 @@ def generate_asimov_data(
par_bounds (:obj:`tensor`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`tensor` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
return_fitted_pars (:obj:`bool`): Return the best-fit parameter values for the given ``asimov_mu``.
Expand Down Expand Up @@ -241,8 +241,8 @@ def __init__(
par_bounds (:obj:`tensor`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`tensor` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
test_stat (:obj:`str`): The test statistic to use as a numerical summary of the
data: ``'qtilde'``, ``'q'``, or ``'q0'``.
Expand Down Expand Up @@ -685,8 +685,8 @@ def __init__(
par_bounds (:obj:`tensor`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`tensor` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
test_stat (:obj:`str`): The test statistic to use as a numerical summary of the
data: ``'qtilde'``, ``'q'``, or ``'q0'``.
Expand Down
8 changes: 4 additions & 4 deletions src/pyhf/infer/mle.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,8 +106,8 @@ def fit(data, pdf, init_pars=None, par_bounds=None, fixed_params=None, **kwargs)
par_bounds (:obj:`list` of :obj:`list`/:obj:`tuple`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`list` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
kwargs: Keyword arguments passed through to the optimizer API
Returns:
Expand Down Expand Up @@ -180,8 +180,8 @@ def fixed_poi_fit(
par_bounds (:obj:`list` of :obj:`list`/:obj:`tuple`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`list` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
kwargs: Keyword arguments passed through to the optimizer API
Returns:
Expand Down
20 changes: 10 additions & 10 deletions src/pyhf/infer/test_statistics.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,8 +112,8 @@ def qmu(mu, data, pdf, init_pars, par_bounds, fixed_params, return_fitted_pars=F
par_bounds (:obj:`list` of :obj:`list`/:obj:`tuple`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`list` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
return_fitted_pars (:obj:`bool`): Return the best-fit parameter tensors
the fixed-POI and unconstrained fits have converged on
(i.e. :math:`\mu, \hat{\hat{\theta}}` and :math:`\hat{\mu}, \hat{\theta}`)
Expand Down Expand Up @@ -207,8 +207,8 @@ def qmu_tilde(
par_bounds (:obj:`list` of :obj:`list`/:obj:`tuple`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`list` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
return_fitted_pars (:obj:`bool`): Return the best-fit parameter tensors
the fixed-POI and unconstrained fits have converged on
(i.e. :math:`\mu, \hat{\hat{\theta}}` and :math:`\hat{\mu}, \hat{\theta}`)
Expand Down Expand Up @@ -290,8 +290,8 @@ def tmu(mu, data, pdf, init_pars, par_bounds, fixed_params, return_fitted_pars=F
par_bounds (:obj:`list` of :obj:`list`/:obj:`tuple`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`list` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
return_fitted_pars (:obj:`bool`): Return the best-fit parameter tensors
the fixed-POI and unconstrained fits have converged on
(i.e. :math:`\mu, \hat{\hat{\theta}}` and :math:`\hat{\mu}, \hat{\theta}`)
Expand Down Expand Up @@ -380,8 +380,8 @@ def tmu_tilde(
par_bounds (:obj:`list` of :obj:`list`/:obj:`tuple`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`list` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
return_fitted_pars (:obj:`bool`): Return the best-fit parameter tensors
the fixed-POI and unconstrained fits have converged on
(i.e. :math:`\mu, \hat{\hat{\theta}}` and :math:`\hat{\mu}, \hat{\theta}`)
Expand Down Expand Up @@ -458,8 +458,8 @@ def q0(mu, data, pdf, init_pars, par_bounds, fixed_params, return_fitted_pars=Fa
par_bounds (:obj:`list` of :obj:`list`/:obj:`tuple`): The extrema of values the model parameters
are allowed to reach in the fit.
The shape should be ``(n, 2)`` for ``n`` model parameters.
fixed_params (:obj:`list` of :obj:`bool`): The flag to set a parameter constant to its starting
value during minimization.
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): The flag to set a parameter
constant to its starting value during minimization.
return_fitted_pars (:obj:`bool`): Return the best-fit parameter tensors
the fixed-POI and unconstrained fits have converged on
(i.e. :math:`\mu, \hat{\hat{\theta}}` and :math:`\hat{\mu}, \hat{\theta}`)
Expand Down
2 changes: 1 addition & 1 deletion src/pyhf/infer/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def all_pois_floating(pdf, fixed_params):
Args:
pdf (~pyhf.pdf.Model): The statistical model adhering to the schema
``model.json``.
fixed_params (:obj:`list` or `tensor` of :obj:`bool`): Array of
fixed_params (:obj:`tuple` or :obj:`list` of :obj:`bool`): Array of
:obj:`bool` indicating if model parameters are fixed.
Returns:
Expand Down

0 comments on commit f2ce224

Please sign in to comment.