Skip to content

Commit

Permalink
[tmva] Fix usage of TFile in Python tutorials
Browse files Browse the repository at this point in the history
  • Loading branch information
vepadulano authored and dpiparo committed Nov 27, 2024
1 parent e9d2803 commit 6735f22
Show file tree
Hide file tree
Showing 3 changed files with 217 additions and 185 deletions.
115 changes: 63 additions & 52 deletions tutorials/tmva/keras/ClassificationKeras.py
Original file line number Diff line number Diff line change
@@ -1,70 +1,81 @@
#!/usr/bin/env python
## \file
## \ingroup tutorial_tmva_keras
## \notebook -nodraw
## This tutorial shows how to do classification in TMVA with neural networks
## trained with keras.
##
## \macro_code
##
## \date 2017
## \author TMVA Team

from ROOT import TMVA, TFile, TTree, TCut
# \file
# \ingroup tutorial_tmva_keras
# \notebook -nodraw
# This tutorial shows how to do classification in TMVA with neural networks
# trained with keras.
#
# \macro_code
#
# \date 2017
# \author TMVA Team

from ROOT import TMVA, TFile, TCut
from subprocess import call
from os.path import isfile

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD

# Setup TMVA
TMVA.Tools.Instance()
TMVA.PyMethodBase.PyInitialize()

output = TFile.Open('TMVA_Classification_Keras.root', 'RECREATE')
factory = TMVA.Factory('TMVAClassification', output,
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
def create_model():
# Generate model

# Define model
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=4))
model.add(Dense(2, activation='softmax'))

# Set loss and optimizer
model.compile(loss='categorical_crossentropy',
optimizer=SGD(learning_rate=0.01), weighted_metrics=['accuracy', ])

# Store model to file
model.save('modelClassification.h5')
model.summary()


def run():
with TFile.Open('TMVA_Classification_Keras.root', 'RECREATE') as output, TFile.Open('tmva_class_example.root') as data:
factory = TMVA.Factory('TMVAClassification', output,
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')

# Load data
if not isfile('tmva_class_example.root'):
call(['curl', '-L', '-O', 'http://root.cern/files/tmva_class_example.root'])
signal = data.Get('TreeS')
background = data.Get('TreeB')

data = TFile.Open('tmva_class_example.root')
signal = data.Get('TreeS')
background = data.Get('TreeB')
dataloader = TMVA.DataLoader('dataset')
for branch in signal.GetListOfBranches():
dataloader.AddVariable(branch.GetName())

dataloader = TMVA.DataLoader('dataset')
for branch in signal.GetListOfBranches():
dataloader.AddVariable(branch.GetName())
dataloader.AddSignalTree(signal, 1.0)
dataloader.AddBackgroundTree(background, 1.0)
dataloader.PrepareTrainingAndTestTree(TCut(''),
'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')

dataloader.AddSignalTree(signal, 1.0)
dataloader.AddBackgroundTree(background, 1.0)
dataloader.PrepareTrainingAndTestTree(TCut(''),
'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
# Book methods
factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
'!H:!V:Fisher:VarTransform=D,G')
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
'H:!V:VarTransform=D,G:FilenameModel=modelClassification.h5:FilenameTrainedModel=trainedModelClassification.h5:NumEpochs=20:BatchSize=32')

# Generate model
# Run training, test and evaluation
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()

# Define model
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=4))
model.add(Dense(2, activation='softmax'))

# Set loss and optimizer
model.compile(loss='categorical_crossentropy',
optimizer=SGD(learning_rate=0.01), weighted_metrics=['accuracy', ])
if __name__ == "__main__":
# Setup TMVA
TMVA.Tools.Instance()
TMVA.PyMethodBase.PyInitialize()

# Store model to file
model.save('modelClassification.h5')
model.summary()
# Create and store the ML model
create_model()

# Book methods
factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
'!H:!V:Fisher:VarTransform=D,G')
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
'H:!V:VarTransform=D,G:FilenameModel=modelClassification.h5:FilenameTrainedModel=trainedModelClassification.h5:NumEpochs=20:BatchSize=32')
# Load data
if not isfile('tmva_class_example.root'):
call(['curl', '-L', '-O', 'http://root.cern/files/tmva_class_example.root'])

# Run training, test and evaluation
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()
# Run TMVA
run()
148 changes: 79 additions & 69 deletions tutorials/tmva/keras/MulticlassKeras.py
Original file line number Diff line number Diff line change
@@ -1,75 +1,85 @@
#!/usr/bin/env python
## \file
## \ingroup tutorial_tmva_keras
## \notebook -nodraw
## This tutorial shows how to do multiclass classification in TMVA with neural
## networks trained with keras.
##
## \macro_code
##
## \date 2017
## \author TMVA Team

from ROOT import TMVA, TFile, TTree, TCut, gROOT
# \file
# \ingroup tutorial_tmva_keras
# \notebook -nodraw
# This tutorial shows how to do multiclass classification in TMVA with neural
# networks trained with keras.
#
# \macro_code
#
# \date 2017
# \author TMVA Team

from ROOT import TMVA, TFile, TCut, gROOT
from os.path import isfile

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD

# Setup TMVA
TMVA.Tools.Instance()
TMVA.PyMethodBase.PyInitialize()

output = TFile.Open('TMVA.root', 'RECREATE')
factory = TMVA.Factory('TMVAClassification', output,
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=multiclass')

# Load data
if not isfile('tmva_example_multiple_background.root'):
createDataMacro = str(gROOT.GetTutorialDir()) + '/tmva/createData.C'
print(createDataMacro)
gROOT.ProcessLine('.L {}'.format(createDataMacro))
gROOT.ProcessLine('create_MultipleBackground(4000)')

data = TFile.Open('tmva_example_multiple_background.root')
signal = data.Get('TreeS')
background0 = data.Get('TreeB0')
background1 = data.Get('TreeB1')
background2 = data.Get('TreeB2')

dataloader = TMVA.DataLoader('dataset')
for branch in signal.GetListOfBranches():
dataloader.AddVariable(branch.GetName())

dataloader.AddTree(signal, 'Signal')
dataloader.AddTree(background0, 'Background_0')
dataloader.AddTree(background1, 'Background_1')
dataloader.AddTree(background2, 'Background_2')
dataloader.PrepareTrainingAndTestTree(TCut(''),
'SplitMode=Random:NormMode=NumEvents:!V')

# Generate model

# Define model
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=4))
model.add(Dense(4, activation='softmax'))

# Set loss and optimizer
model.compile(loss='categorical_crossentropy', optimizer=SGD(learning_rate=0.01), weighted_metrics=['accuracy',])

# Store model to file
model.save('modelMultiClass.h5')
model.summary()

# Book methods
factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
'!H:!V:Fisher:VarTransform=D,G')
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
'H:!V:VarTransform=D,G:FilenameModel=modelMultiClass.h5:FilenameTrainedModel=trainedModelMultiClass.h5:NumEpochs=20:BatchSize=32')

# Run TMVA
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()

def create_model():
# Define model
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=4))
model.add(Dense(4, activation='softmax'))

# Set loss and optimizer
model.compile(loss='categorical_crossentropy', optimizer=SGD(
learning_rate=0.01), weighted_metrics=['accuracy',])

# Store model to file
model.save('modelMultiClass.h5')
model.summary()


def run():
with TFile.Open('TMVA.root', 'RECREATE') as output, TFile.Open('tmva_example_multiple_background.root') as data:
factory = TMVA.Factory('TMVAClassification', output,
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=multiclass')

signal = data.Get('TreeS')
background0 = data.Get('TreeB0')
background1 = data.Get('TreeB1')
background2 = data.Get('TreeB2')

dataloader = TMVA.DataLoader('dataset')
for branch in signal.GetListOfBranches():
dataloader.AddVariable(branch.GetName())

dataloader.AddTree(signal, 'Signal')
dataloader.AddTree(background0, 'Background_0')
dataloader.AddTree(background1, 'Background_1')
dataloader.AddTree(background2, 'Background_2')
dataloader.PrepareTrainingAndTestTree(TCut(''),
'SplitMode=Random:NormMode=NumEvents:!V')

# Book methods
factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
'!H:!V:Fisher:VarTransform=D,G')
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
'H:!V:VarTransform=D,G:FilenameModel=modelMultiClass.h5:FilenameTrainedModel=trainedModelMultiClass.h5:NumEpochs=20:BatchSize=32')

# Run TMVA
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()


if __name__ == "__main__":
# Generate model
create_model()

# Setup TMVA
TMVA.Tools.Instance()
TMVA.PyMethodBase.PyInitialize()

# Load data
if not isfile('tmva_example_multiple_background.root'):
createDataMacro = str(gROOT.GetTutorialDir()) + '/tmva/createData.C'
print(createDataMacro)
gROOT.ProcessLine('.L {}'.format(createDataMacro))
gROOT.ProcessLine('create_MultipleBackground(4000)')

# Run TMVA
run()
Loading

0 comments on commit 6735f22

Please sign in to comment.