A comprehensive toolchain for Large Language Models (LLMs) built on LangChain, providing a flexible framework for document processing, retrieval-augmented generation (RAG), and model evaluation.
- LangChain Integration: Leverages LangChain's powerful components for building sophisticated LLM applications
- RAG (Retrieval Augmented Generation): Multiple implementations for enhanced context-aware responses
- Fine Tuning Models: Support for custom model fine-tuning and specialized chain creation
- Vector Database Support Pinecone and other intergations
- Experiments: Integrated experiment tracking and evaluation using LangSmith
- Evaluations: Comprehensive evaluation framework for assessing model performance
- CI/DI: Dockerize
- CI/DI: Deploy to AWS/Azure templates
- Chains: Chat history = Chains: from langchain_core.documents import Document https://python.langchain.com/docs/tutorials/retrievers/
- Chains: over SQL data
- Agents https://python.langchain.com/docs/tutorials/agents/
- RAG: similarity threshold for fallback answer
- UI: Graphical Interface for documents uploading
- 2 more Vector DB supports
- 2 more Document loaders
- CI/DI: HELM + k8 deployments
rag_gpt_model_pdf_chain.py
: PDF document processing chainrag_gpt_model_txt_from_dir_chain.py
: Text file processing chainrag_gpt_model_pdf_pinecone_chain.py
: Pinecone-based document processingtest_chains.py
: Test utilities for different chain implementationsrun_experiment.py
: Experiment runner with LangSmith integrationfine_tuned_chain.py
: Custom chain implementationget_datasets.py
: Dataset management utilities
- Dashboard – https://smith.langchain.com/
- Models – https://python.langchain.com/docs/integrations/chat/
- Document loaders – https://python.langchain.com/docs/integrations/document_loaders/
- Vector Stores - https://python.langchain.com/docs/integrations/vectorstores/
- Retrievers – https://python.langchain.com/docs/integrations/retrievers/
- Tutorials - https://python.langchain.com/docs/tutorials/
cd LLM-toolchain
python3 -m venv venv
source myenv/bin/activate
pip install -r requirements.txt
Run any script with python ...