-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Unknown
committed
Jul 23, 2023
0 parents
commit 8795428
Showing
225 changed files
with
50,169 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
# Sphinx build info version 1 | ||
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. | ||
config: f793e26a64722d22ed1d72eb8d67cd5a | ||
tags: 645f666f9bcd5a90fca523b33c5a78b7 |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
================================== | ||
Options Calibration and Pricing | ||
================================== | ||
|
||
|
||
VolSurface | ||
================== | ||
|
||
.. module:: quantflow.options.surface | ||
|
||
.. autoclass:: VolSurface | ||
:members: |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
|
||
API Reference | ||
============== | ||
|
||
.. toctree:: | ||
:maxdepth: 2 | ||
|
||
sp | ||
options | ||
utils |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
================================== | ||
Stochastic Process API Reference | ||
================================== | ||
|
||
|
||
.. module:: quantflow.sp.base | ||
|
||
|
||
StochasticProcess | ||
================== | ||
|
||
.. autoclass:: StochasticProcess | ||
:members: | ||
|
||
|
||
StochasticProcess1d | ||
===================== | ||
|
||
.. autoclass:: StochasticProcess1d | ||
:members: | ||
|
||
|
||
IntensityProcess | ||
===================== | ||
|
||
.. autoclass:: IntensityProcess | ||
:members: | ||
|
||
|
||
WeinerProcess | ||
===================== | ||
|
||
.. module:: quantflow.sp.weiner | ||
|
||
.. autoclass:: WeinerProcess | ||
:members: | ||
|
||
|
||
PoissonProcess | ||
===================== | ||
|
||
.. module:: quantflow.sp.poisson | ||
|
||
.. autoclass:: PoissonProcess | ||
:members: | ||
|
||
|
||
CompoundPoissonProcess | ||
======================= | ||
|
||
.. module:: quantflow.sp.poisson | ||
|
||
.. autoclass:: CompoundPoissonProcess | ||
:members: | ||
|
||
|
||
Heston | ||
======================= | ||
|
||
.. module:: quantflow.sp.heston | ||
|
||
.. autoclass:: Heston | ||
:members: | ||
|
||
|
||
JumpDiffision | ||
======================= | ||
|
||
.. module:: quantflow.sp.jump_diffusion | ||
|
||
.. autoclass:: JumpDiffision | ||
:members: | ||
|
||
.. autoclass:: Merton | ||
:members: |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
=========== | ||
Utilities | ||
=========== | ||
|
||
|
||
Paths | ||
================== | ||
|
||
.. module:: quantflow.utils.paths | ||
|
||
.. autoclass:: Paths | ||
:members: | ||
|
||
|
||
Marginal1D | ||
================== | ||
|
||
.. module:: quantflow.utils.marginal | ||
|
||
.. autoclass:: Marginal1D | ||
:members: |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
--- | ||
jupytext: | ||
formats: ipynb,md:myst | ||
text_representation: | ||
extension: .md | ||
format_name: myst | ||
format_version: 0.13 | ||
jupytext_version: 1.14.7 | ||
kernelspec: | ||
display_name: Python 3 (ipykernel) | ||
language: python | ||
name: python3 | ||
--- | ||
|
||
# Calibration | ||
|
||
Early pointers | ||
|
||
* https://github.com/rlabbe/filterpy | ||
* [filterpy book](https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python) | ||
|
||
+++ | ||
|
||
## Calibrating ABC | ||
|
||
For calibration we use {cite:p}`ukf`. | ||
Lets consider the Heston model as a test case | ||
|
||
```{code-cell} ipython3 | ||
from quantflow.sp.heston import Heston | ||
pr = Heston.create(vol=0.6, kappa=1.3, sigma=0.8, rho=-0.6) | ||
pr.variance_process.is_positive | ||
``` | ||
|
||
The Heston model is a classical example where the calibration of parameters requires to deal with the estimation of an unobserved random variable, the stochastic variance. The model can be discretized as follow: | ||
|
||
\begin{align} | ||
d \nu_t &= \kappa\left(\theta -\nu_t\right) dt + \sigma \sqrt{\nu_t} d z_t \\ | ||
d s_t &= -\frac{\nu_t}{2}dt + \sqrt{\nu_t} d w_t \\ | ||
{\mathbb E}\left[d w_t d z_t\right] &= \rho dt | ||
\end{align} | ||
|
||
noting that | ||
|
||
\begin{equation} | ||
d z_t = \rho d w_t + \sqrt{1-\rho^2} d b_t | ||
\end{equation} | ||
|
||
which leads to | ||
|
||
\begin{align} | ||
d \nu_t &= \kappa\left(\theta -\nu_t\right) dt + \sigma \sqrt{\nu_t} \rho d w_t + \sigma \sqrt{\nu_t} \sqrt{1-\rho^2} d b_t \\ | ||
d s_t &= -\frac{\nu_t}{2}dt + \sqrt{\nu_t} d w_t \\ | ||
\end{align} | ||
|
||
and finally | ||
|
||
\begin{align} | ||
d \nu_t &= \kappa\left(\theta -\nu_t\right) dt + \sigma \rho \frac{\nu_t}{2} dt + \sigma \sqrt{\nu_t} \sqrt{1-\rho^2} d b_t + \sigma \rho d s_t\\ | ||
d s_t &= -\frac{\nu_t}{2}dt + \sqrt{\nu_t} d w_t \\ | ||
\end{align} | ||
|
||
Our problem is to find the *best* estimate of $\nu_t$ given by ths equation based on the observations $s_t$. | ||
|
||
The Heston model is a dynamic model which can be represented by a state-space form: $X_t$ is the state while $Z_t$ is the observable | ||
|
||
\begin{align} | ||
X_{t+1} &= f\left(X_t, \Theta\right) + B^x_t\\ | ||
Z_t &= h\left(X_t, \Theta\right) + B^z_t \\ | ||
B^x_t &= {\cal N}\left(0, Q_t\right) \\ | ||
B^z_t &= {\cal N}\left(0, R_t\right) \\ | ||
\end{align} | ||
|
||
$f$ is the *state transition equation* while $h$ is the *measurement equation*. | ||
|
||
+++ | ||
|
||
the state equation is given by | ||
|
||
\begin{align} | ||
X_{t+1} &= \left[\begin{matrix}\kappa\left(\theta\right) dt \\ 0\end{matrix}\right] + | ||
\end{align} | ||
|
||
```{code-cell} ipython3 | ||
[p for p in pr.variance_process.parameters] | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
``` | ||
|
||
## Calibration against historical timeseries | ||
|
||
We calibrate the Heston model agais historical time series, in this case the measurement is the log change for a given frequency. | ||
|
||
\begin{align} | ||
F_t &= \left[\begin{matrix}1 - \kappa\theta dt \\ 0\end{matrix}\right] \\ | ||
Q_t &= \left[\begin{matrix}1 - \kappa\theta dt \\ 0\end{matrix}\right] \\ | ||
z_t &= d s_t | ||
\end{align} | ||
|
||
The observation vector is given by | ||
\begin{align} | ||
x_t &= \left[\begin{matrix}\nu_t && w_t && z_t\end{matrix}\right]^T \\ | ||
\bar{x}_t = {\mathbb E}\left[x_t\right] &= \left[\begin{matrix}\nu_t && 0 && 0\end{matrix}\right]^T | ||
\end{align} | ||
|
||
```{code-cell} ipython3 | ||
from quantflow.data.fmp import FMP | ||
frequency = "1min" | ||
async with FMP() as cli: | ||
df = await cli.prices("ETHUSD", frequency) | ||
df = df.sort_values("date").reset_index(drop=True) | ||
df | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
import plotly.express as px | ||
fig = px.line(df, x="date", y="close", markers=True) | ||
fig.show() | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
import numpy as np | ||
from quantflow.utils.volatility import parkinson_estimator, GarchEstimator | ||
df["returns"] = np.log(df["close"]) - np.log(df["open"]) | ||
df["pk"] = parkinson_estimator(df["high"], df["low"]) | ||
ds = df.dropna() | ||
dt = cli.historical_frequencies_annulaized()[frequency] | ||
fig = px.line(ds["returns"], markers=True) | ||
fig.show() | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
import plotly.express as px | ||
from quantflow.utils.bins import pdf | ||
df = pdf(ds["returns"], num=20) | ||
fig = px.bar(df, x="x", y="f") | ||
fig.show() | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
g1 = GarchEstimator.returns(ds["returns"], dt) | ||
g2 = GarchEstimator.pk(ds["returns"], ds["pk"], dt) | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
import pandas as pd | ||
yf = pd.DataFrame(dict(returns=g2.y2, pk=g2.p)) | ||
fig = px.line(yf, markers=True) | ||
fig.show() | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
r1 = g1.fit() | ||
r1 | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
r2 = g2.fit() | ||
r2 | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
sig2 = pd.DataFrame(dict(returns=np.sqrt(g2.filter(r1["params"])), pk=np.sqrt(g2.filter(r2["params"])))) | ||
fig = px.line(sig2, markers=False, title="Stochastic volatility") | ||
fig.show() | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
class HestonCalibration: | ||
def __init__(self, dt: float, initial_std = 0.5): | ||
self.dt = dt | ||
self.kappa = 1 | ||
self.theta = initial_std*initial_std | ||
self.sigma = 0.2 | ||
self.x0 = np.array((self.theta, 0)) | ||
def prediction(self, x): | ||
return np.array((x[0] + self.kappa*(self.theta - x[0])*self.dt, -0.5*x[0]*self.dt)) | ||
def state_jacobian(self): | ||
"""THe Jacobian of the state equation""" | ||
return np.array(((1-self.kappa*self.dt, 0),(-0.5*self.dt, 0))) | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
c = HestonCalibration(dt) | ||
c.x0 | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
c.prediction(c.x0) | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
c.state_jacobian() | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
--- | ||
jupytext: | ||
text_representation: | ||
extension: .md | ||
format_name: myst | ||
format_version: 0.13 | ||
jupytext_version: 1.14.7 | ||
kernelspec: | ||
display_name: Python 3 (ipykernel) | ||
language: python | ||
name: python3 | ||
--- | ||
|
||
# Hurst Exponent | ||
|
||
The [Hurst exponent](https://en.wikipedia.org/wiki/Hurst_exponent) is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases. | ||
|
||
It is a statistics which can be used to test if a time-series is mean reverting or it is trending. | ||
|
||
```{code-cell} ipython3 | ||
from quantflow.sp.cir import CIR | ||
p = CIR(kappa=1, sigma=1) | ||
``` | ||
|
||
# Links | ||
|
||
* [Wikipedia](https://en.wikipedia.org/wiki/Hurst_exponent) | ||
* [Hurst Exponent for Algorithmic Trading | ||
](https://robotwealth.com/demystifying-the-hurst-exponent-part-1/) | ||
|
||
```{code-cell} ipython3 | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
--- | ||
jupytext: | ||
text_representation: | ||
extension: .md | ||
format_name: myst | ||
format_version: 0.13 | ||
jupytext_version: 1.14.7 | ||
kernelspec: | ||
display_name: Python 3 (ipykernel) | ||
language: python | ||
name: python3 | ||
--- | ||
|
||
# Applications | ||
|
||
Real-world applications of the library | ||
|
||
```{tableofcontents} | ||
``` | ||
|
||
```{code-cell} ipython3 | ||
``` |
Oops, something went wrong.