- Docker >= 19.03
- CUDA >= 10.0
Prepare your videos or download from here
xhost local:root
export VIDEOS=<absolute path of videos folder>
export EXPOSED_PORT=8000
docker run \
-v $VIDEOS:/mnt/videos \
-v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=unix$DISPLAY \
-p $EXPOSED_PORT:8000 \
--gpus=all -u qtuser -itd \
qcuong98/ivos-demo
docker exec -it <container_id, output of docker run command> bash
yarn install && yarn build
./server/run_api.sh
python gui.py \
[--gpus <gpu_ids for fbrs and stm>] \
[--mem <memory size>] \
[--config <json directory>] \
[--step <step frame>] \
--video /mnt/videos/<video-name>.mp4
# example: python gui.py --gpus 0 --mem 5 --video /mnt/videos/india.mp4
Annotation results are shown in localhost:EXPORSED_PORT
File objects.json describes that there are 3 object instances in the video sequence. Name of objects with id from 1 to 3 are woman_1, woman_2, and woman_3, respectively.
{
"objects": [
"woman_1",
"woman_2",
"woman_3",
]
}
- f-BRS: save in segmentation/fbrs/weights/resnet50_dh128_lvis.pth
- STM: save in propagation/STM/STM_weights.pth
python gui.py \
[--gpus <gpu_ids for fbrs and stm>] \
[--mem <memory size>] \
[--config <json directory>] \
[--step <step frame>] \
--video <video-path>.mp4
yarn install && yarn build
./server/run_api.sh <port>
A part of this repository is used for DAVIS Challenge 2020 Interactive Scenario
PyQt layout is modified from Seoung Wug Oh's repository