Skip to content

qcuong98/ivos-demo

Repository files navigation

Video Object Annotation Tool

REQUIREMENTS

  • Docker >= 19.03
  • CUDA >= 10.0

USAGE

Prepare Videos

Prepare your videos or download from here

Run By Docker Image

Create Docker container

xhost local:root

export VIDEOS=<absolute path of videos folder>
export EXPOSED_PORT=8000

docker run \
	-v $VIDEOS:/mnt/videos \
	-v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=unix$DISPLAY \
	-p $EXPOSED_PORT:8000 \
	--gpus=all -u qtuser -itd \
	qcuong98/ivos-demo

docker exec -it <container_id, output of docker run command> bash

In the container

yarn install && yarn build
./server/run_api.sh

python gui.py \
	[--gpus <gpu_ids for fbrs and stm>] \
	[--mem <memory size>] \
	[--config <json directory>] \
	[--step <step frame>] \
	--video /mnt/videos/<video-name>.mp4

# example: python gui.py --gpus 0 --mem 5 --video /mnt/videos/india.mp4

Annotation results are shown in localhost:EXPORSED_PORT

An example of config file objects:

File objects.json describes that there are 3 object instances in the video sequence. Name of objects with id from 1 to 3 are woman_1, woman_2, and woman_3, respectively.

{
	"objects": [
		"woman_1",
		"woman_2",
		"woman_3",
	]
}

If json config is not specified, name of objects will be object_1, object_2, ..., object_5.

Run By Source

Download pretrained weights

  • f-BRS: save in segmentation/fbrs/weights/resnet50_dh128_lvis.pth
  • STM: save in propagation/STM/STM_weights.pth

Annotation Tool

python gui.py \
	[--gpus <gpu_ids for fbrs and stm>] \
	[--mem <memory size>] \
	[--config <json directory>] \
	[--step <step frame>] \
	--video <video-path>.mp4

Semantic Video Website

yarn install && yarn build
./server/run_api.sh <port>

CREDIT

A part of this repository is used for DAVIS Challenge 2020 Interactive Scenario

PyQt layout is modified from Seoung Wug Oh's repository

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published