-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
119 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
"""Data processing for the benchmark results.""" | ||
|
||
from dataclasses import dataclass, asdict | ||
|
||
import json | ||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
|
||
|
||
@dataclass | ||
class MakespanResult: | ||
"""Holds the makespan values for the baseline, heuristic, and rl algorithms""" | ||
|
||
baseline: float | ||
heuristic: float | ||
rl: float | ||
|
||
|
||
@dataclass | ||
class ScoreResult: | ||
"""Holds the M score values for the baseline, heuristic, and rl algorithms.""" | ||
|
||
baseline: float | ||
heuristic: float | ||
rl: float | ||
|
||
|
||
@dataclass | ||
class NoiseResult: | ||
"""Holds the noise values for the baseline, heuristic, and rl algorithms""" | ||
|
||
baseline: float | ||
heuristic: float | ||
rl: float | ||
|
||
|
||
def analyze_heuristic_benchmarks(in_file: str) -> None: | ||
"""Visualizes the benchmark results and calculates the average improvements. | ||
Args: | ||
in_file (str): The file containing the benchmark results. | ||
""" | ||
with open(in_file, "r", encoding="utf-8") as f: | ||
data: list[dict] = json.load(f) | ||
for setting in data: | ||
title = str(setting["setting"]) | ||
benchmarks = setting["benchmarks"] | ||
makespans, scores, noises = [], [], [] | ||
# Loop through each benchmark | ||
for benchmark in benchmarks: | ||
makespans.append( | ||
MakespanResult( | ||
baseline=benchmark["baseline"]["makespan"], | ||
heuristic=benchmark["heuristic"]["makespan"], | ||
rl=benchmark["rl"]["makespan"], | ||
) | ||
) | ||
scores.append( | ||
ScoreResult( | ||
baseline=benchmark["baseline"]["metric"], | ||
heuristic=benchmark["heuristic"]["metric"], | ||
rl=benchmark["rl"]["metric"], | ||
) | ||
) | ||
noises.append( | ||
NoiseResult( | ||
baseline=benchmark["baseline"]["noise"], | ||
heuristic=benchmark["heuristic"]["noise"], | ||
rl=benchmark["rl"]["noise"], | ||
) | ||
) | ||
|
||
_plot_boxplots(title, makespans, scores, noises) | ||
# Display the resulting plot | ||
plt.tight_layout() | ||
plt.savefig(in_file.replace(".json", ".pdf")) | ||
|
||
|
||
def _plot_boxplots( | ||
title: str, | ||
makespans: list[MakespanResult], | ||
scores: list[ScoreResult], | ||
noises: list[NoiseResult], | ||
) -> None: | ||
props = { | ||
"boxprops": {"facecolor": "#98c6ea", "edgecolor": "#154060"}, | ||
"whiskerprops": {"color": "#154060"}, | ||
"medianprops": {"color": "#e37222"}, | ||
"capprops": {"color": "#154060"}, | ||
"patch_artist": True, | ||
"widths": 0.25, | ||
"positions": [0.5, 1, 1.5], | ||
} | ||
makespan_data = pd.DataFrame([asdict(result) for result in makespans]) | ||
score_data = pd.DataFrame([asdict(result) for result in scores]) | ||
noise_data = pd.DataFrame([asdict(result) for result in noises]) | ||
|
||
# Plotting boxplots | ||
fig, axes = plt.subplots(3, 1, figsize=(5, 7)) | ||
fig.suptitle(title) | ||
|
||
makespan_data.plot( | ||
kind="box", | ||
ax=axes[0], | ||
**props, | ||
) | ||
axes[0].set_title("Makespan") | ||
axes[0].set_ylabel(r"Time [$\mu s$]") | ||
|
||
score_data.plot(kind="box", ax=axes[1], **props) | ||
axes[1].set_title("Score") | ||
axes[1].set_ylabel(r"$\mathbf{M}$") | ||
|
||
noise_data.plot(kind="box", ax=axes[2], **props) | ||
axes[2].set_title("Noise") | ||
axes[2].set_ylabel(r"$\mathbf{F}$") | ||
|
||
for ax in axes: | ||
ax.set_xticklabels(["Baseline", "Heuristic", "RL"]) |