Skip to content

pyz-creeper/ccnet-jittor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ccnet-jittor

This is a Jittor implementation of CCNet for semantic segmentation.

Quick Start

Environments

You should install Jittor under the guidance of Jittor official.

Training

To train with default batch-size 16 setting, you only need to specify the desired log directory, and run:

mpirun -np 4 python train.py --log_dir <log directory>

Testing

To test a model, you can specify the model checkpoint directory and the model's backbone, and run:

python test.py --ckpt_dir <log directory> --model_backbone <van or resnet>

Inference

To visualize a result, you can specify the picture's directory and the model, and run:

python visualize.py --ckpt_dir <log directory> --model_backbone <van or resnet> --pic_dir <picture directory> --save_dir <save directory>

Pretrained Checkpoints

Pretrained Backbone

Backbone Checkpoints
ResNet101-C TsinghuaCloud
VAN-base TsinghuaCloud

CCNet Results

Settings mIoU Checkpoints
ResNet101-C, batch-size 16 41.72 (42.80 wi multiscale) TsinghuaCloud
ResNet101-C, batch-size 8 38.85 TsinghuaCloud
ResNet101-C, batch-size 8, dilated 38.72 TsinghuaCloud
ResNet101-C, batch-size 8, neighborhood 36.77 TsinghuaCloud
VAN-base, batch-size 16 36.82 TsinghuaCloud

About

THUCS-2022-ANN-Final-PRJ

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages