Skip to content

Commit

Permalink
Bump PyMC dependency
Browse files Browse the repository at this point in the history
  • Loading branch information
ricardoV94 committed Jan 8, 2025
1 parent b8f2e8e commit c585ee2
Show file tree
Hide file tree
Showing 5 changed files with 26 additions and 117 deletions.
2 changes: 1 addition & 1 deletion environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ dependencies:
- pydantic
- preliz
# NOTE: Keep minimum pymc version in sync with ci.yml `OLDEST_PYMC_VERSION`
- pymc>=5.12.0,<5.16.0
- pymc>=5.20.0
- scikit-learn>=1.1.1
- seaborn>=0.12.2
- xarray
Expand Down
119 changes: 22 additions & 97 deletions pymc_marketing/clv/distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,9 @@
# limitations under the License.
"""Distributions for the CLV module."""

from functools import reduce

import numpy as np
import pymc as pm
import pytensor.tensor as pt
from pymc.distributions.continuous import PositiveContinuous
from pymc.distributions.dist_math import betaln, check_parameters
Expand All @@ -28,26 +29,16 @@

class ContNonContractRV(RandomVariable):
name = "continuous_non_contractual"
ndim_supp = 1
ndims_params = [0, 0, 0, 0]
signature = "(),(),()->(2)"
dtype = "floatX"
_print_name = ("ContNonContract", "\\operatorname{ContNonContract}")

def make_node(self, rng, size, dtype, lam, p, T):
T = pt.as_tensor_variable(T)

return super().make_node(rng, size, dtype, lam, p, T)
def __call__(self, lam, p, T, size=None, **kwargs):
return super().__call__(lam, p, T, size=size, **kwargs)

@classmethod
def rng_fn(cls, rng, lam, p, T, size):
size = pm.distributions.shape_utils.to_tuple(size)

# TODO: broadcast sizes
lam = np.asarray(lam)
p = np.asarray(p)
T = np.asarray(T)

if size == ():
if size is None:
size = np.broadcast_shapes(lam.shape, p.shape, T.shape)

lam = np.broadcast_to(lam, size)
Expand All @@ -74,9 +65,6 @@ def rng_fn(cls, rng, lam, p, T, size):

return np.stack([t_x, x], axis=-1)

def _supp_shape_from_params(*args, **kwargs):
return (2,)


continuous_non_contractual = ContNonContractRV()

Expand Down Expand Up @@ -129,13 +117,14 @@ def logp(value, lam, p, T):
)

logp = pt.switch(
pt.any(
(
reduce(
pt.bitwise_or,
[
pt.and_(pt.ge(t_x, 0), zero_observations),
pt.lt(t_x, 0),
pt.lt(x, 0),
pt.gt(t_x, T),
),
],
),
-np.inf,
logp,
Expand All @@ -152,29 +141,16 @@ def logp(value, lam, p, T):

class ContContractRV(RandomVariable):
name = "continuous_contractual"
ndim_supp = 1
ndims_params = [0, 0, 0, 0]
signature = "(),(),()->(3)"
dtype = "floatX"
_print_name = ("ContinuousContractual", "\\operatorname{ContinuousContractual}")

def make_node(self, rng, size, dtype, lam, p, T):
T = pt.as_tensor_variable(T)

return super().make_node(rng, size, dtype, lam, p, T)

def __call__(self, lam, p, T, size=None, **kwargs):
return super().__call__(lam, p, T, size=size, **kwargs)

@classmethod
def rng_fn(cls, rng, lam, p, T, size):
size = pm.distributions.shape_utils.to_tuple(size)

# To do: broadcast sizes
lam = np.asarray(lam)
p = np.asarray(p)
T = np.asarray(T)

if size == ():
if size is None:
size = np.broadcast_shapes(lam.shape, p.shape, T.shape)

lam = np.broadcast_to(lam, size)
Expand Down Expand Up @@ -254,24 +230,15 @@ def logp(value, lam, p, T):
)

logp = pt.switch(
pt.any(pt.or_(pt.lt(t_x, 0), zero_observations)),
-np.inf,
logp,
)
logp = pt.switch(
pt.all(
pt.or_(pt.eq(churn, 0), pt.eq(churn, 1)),
),
logp,
-np.inf,
)
logp = pt.switch(
pt.any(
(
reduce(
pt.bitwise_or,
[
zero_observations,
pt.lt(t_x, 0),
pt.lt(x, 0),
pt.gt(t_x, T),
),
pt.bitwise_not(pt.bitwise_or(pt.eq(churn, 0), pt.eq(churn, 1))),
],
),
-np.inf,
logp,
Expand All @@ -289,34 +256,16 @@ def logp(value, lam, p, T):

class ParetoNBDRV(RandomVariable):
name = "pareto_nbd"
ndim_supp = 1
ndims_params = [0, 0, 0, 0, 0]
signature = "(),(),(),(),()->(2)"
dtype = "floatX"
_print_name = ("ParetoNBD", "\\operatorname{ParetoNBD}")

def make_node(self, rng, size, dtype, r, alpha, s, beta, T):
r = pt.as_tensor_variable(r)
alpha = pt.as_tensor_variable(alpha)
s = pt.as_tensor_variable(s)
beta = pt.as_tensor_variable(beta)
T = pt.as_tensor_variable(T)

return super().make_node(rng, size, dtype, r, alpha, s, beta, T)

def __call__(self, r, alpha, s, beta, T, size=None, **kwargs):
return super().__call__(r, alpha, s, beta, T, size=size, **kwargs)

@classmethod
def rng_fn(cls, rng, r, alpha, s, beta, T, size):
size = pm.distributions.shape_utils.to_tuple(size)

r = np.asarray(r)
alpha = np.asarray(alpha)
s = np.asarray(s)
beta = np.asarray(beta)
T = np.asarray(T)

if size == ():
if size is None:
size = np.broadcast_shapes(
r.shape, alpha.shape, s.shape, beta.shape, T.shape
)
Expand Down Expand Up @@ -357,9 +306,6 @@ def sim_data(lam, mu, T):

return output

def _supp_shape_from_params(*args, **kwargs):
return (2,)


pareto_nbd = ParetoNBDRV()

Expand Down Expand Up @@ -489,34 +435,16 @@ def logp(value, r, alpha, s, beta, T):

class BetaGeoBetaBinomRV(RandomVariable):
name = "beta_geo_beta_binom"
ndim_supp = 1
ndims_params = [0, 0, 0, 0, 0]
signature = "(),(),(),(),()->(2)"
dtype = "floatX"
_print_name = ("BetaGeoBetaBinom", "\\operatorname{BetaGeoBetaBinom}")

def make_node(self, rng, size, dtype, alpha, beta, gamma, delta, T):
alpha = pt.as_tensor_variable(alpha)
beta = pt.as_tensor_variable(beta)
gamma = pt.as_tensor_variable(gamma)
delta = pt.as_tensor_variable(delta)
T = pt.as_tensor_variable(T)

return super().make_node(rng, size, dtype, alpha, beta, gamma, delta, T)

def __call__(self, alpha, beta, gamma, delta, T, size=None, **kwargs):
return super().__call__(alpha, beta, gamma, delta, T, size=size, **kwargs)

@classmethod
def rng_fn(cls, rng, alpha, beta, gamma, delta, T, size) -> np.ndarray:
size = pm.distributions.shape_utils.to_tuple(size)

alpha = np.asarray(alpha)
beta = np.asarray(beta)
gamma = np.asarray(gamma)
delta = np.asarray(delta)
T = np.asarray(T)

if size == ():
if size is None:
size = np.broadcast_shapes(
alpha.shape, beta.shape, gamma.shape, delta.shape, T.shape
)
Expand Down Expand Up @@ -557,9 +485,6 @@ def sim_data(purchase_prob, churn_prob, T):

return output

def _supp_shape_from_params(*args, **kwargs):
return (2,)


beta_geo_beta_binom = BetaGeoBetaBinomRV()

Expand Down
18 changes: 1 addition & 17 deletions pymc_marketing/mlflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,18 +163,6 @@ def log_arviz_summary(
os.remove(path)


def _backwards_compatiable_data_vars(model: Model) -> list[TensorVariable]:
# TODO: Remove with PyMC update
non_data = (
model.observed_RVs + model.free_RVs + model.deterministics + model.potentials
)
vars = {
key: value for key, value in model.named_vars.items() if value not in non_data
}

return list(vars.values())


def log_data(model: Model, idata: az.InferenceData) -> None:
"""Log the data used in the model to MLflow.
Expand All @@ -189,11 +177,7 @@ def log_data(model: Model, idata: az.InferenceData) -> None:
The InferenceData object returned by the sampling method.
"""
data_vars: list[TensorVariable] = (
_backwards_compatiable_data_vars(model)
if not hasattr(model, "data_vars")
else model.data_vars
)
data_vars: list[TensorVariable] = model.data_vars

features = {
var.name: idata.constant_data[var.name].to_numpy()
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ dependencies = [
"pandas",
"pydantic>=2.1.0",
# NOTE: Used as minimum pymc version with ci.yml `OLDEST_PYMC_VERSION`
"pymc>=5.13.0,<5.16.0",
"pymc>=5.20.",
"scikit-learn>=1.1.1",
"seaborn>=0.12.2",
"xarray>=2024.1.0",
Expand Down
2 changes: 1 addition & 1 deletion tests/clv/models/test_gamma_gamma.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,7 @@ def test_spend(self, distribution):
preds.mean(("draw", "chain")), expected_preds_mean, rtol=0.1
)
np.testing.assert_allclose(
preds.std(("draw", "chain")), expected_preds_std, rtol=0.25
preds.std(("draw", "chain")), expected_preds_std, rtol=0.5
)

else:
Expand Down

0 comments on commit c585ee2

Please sign in to comment.