-
-
Notifications
You must be signed in to change notification settings - Fork 51
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement Laplace (quadratic) approximation (#345)
* First draft of quadratic approximation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Review comments incorporated * License and copyright information added * Only add additional data to inferencedata when chains!=0 * Raise error if Hessian is singular * Replace for loop with call to remove_value_transforms * Pass model directly when finding MAP and the Hessian * Update pymc_experimental/inference/laplace.py Co-authored-by: Ricardo Vieira <[email protected]> * Remove chains from public parameters for Laplace approx method * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Parameter draws is not optional with default value 1000 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add warning if numbers of variables in vars does not equal number of model variables * Update version.txt * `shock_size` should never be scalar * Blackjax API change * Handle latest PyMC/PyTensor breaking changes * Temporarily mark two tests as xfail * More bugfixes for statespace (#346) * Allow forward sampling of statespace models in JAX mode Explicitly set data shape to avoid broadcasting error Better handling of measurement error dims in `SARIMAX` models Freeze auxiliary models before forward sampling Bugfixes for posterior predictive sampling helpers Allow specification of time dimension name when registering data Save info about exogenous data for post-estimation tasks Restore `_exog_data_info` member variable Be more consistent with the names of filter outputs * Adjust test suite to reflect API changes Modify structural tests to accommodate deterministic models Save kalman filter outputs to idata for statespace tests Remove test related to `add_exogenous` Adjust structural module tests * Add JAX test suite * Bug-fixes and changes to statespace distributions Remove tests related to the `add_exogenous` method Add dummy `MvNormalSVDRV` for forward jax sampling with `method="SVD"` Dynamically generate `LinearGaussianStateSpaceRV` signature from inputs Add signature and simple test for `SequenceMvNormal` * Re-run example notebooks * Add helper function to sample prior/posterior statespace matrices * fix tests * Wrap jax MvNormal rewrite in try/except block * Don't use `action` keyword in `catch_warnings` * Skip JAX test if `numpyro` is not installed * Handle batch dims on `SequenceMvNormal` * Remove unused batch_dim logic in SequenceMvNormal * Restore `get_support_shape_1d` import * Fix failing test case for laplace --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Ricardo Vieira <[email protected]> Co-authored-by: Jesse Grabowski <[email protected]> Co-authored-by: Ricardo Vieira <[email protected]> Co-authored-by: Jesse Grabowski <[email protected]>
- Loading branch information
1 parent
e85677b
commit 87d4aea
Showing
3 changed files
with
334 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
# Copyright 2024 The PyMC Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import warnings | ||
from collections.abc import Sequence | ||
from typing import Optional | ||
|
||
import arviz as az | ||
import numpy as np | ||
import pymc as pm | ||
import xarray as xr | ||
from arviz import dict_to_dataset | ||
from pymc.backends.arviz import ( | ||
coords_and_dims_for_inferencedata, | ||
find_constants, | ||
find_observations, | ||
) | ||
from pymc.model.transform.conditioning import remove_value_transforms | ||
from pymc.util import RandomSeed | ||
from pytensor import Variable | ||
|
||
|
||
def laplace( | ||
vars: Sequence[Variable], | ||
draws: Optional[int] = 1000, | ||
model=None, | ||
random_seed: Optional[RandomSeed] = None, | ||
progressbar=True, | ||
): | ||
""" | ||
Create a Laplace (quadratic) approximation for a posterior distribution. | ||
This function generates a Laplace approximation for a given posterior distribution using a specified | ||
number of draws. This is useful for obtaining a parametric approximation to the posterior distribution | ||
that can be used for further analysis. | ||
Parameters | ||
---------- | ||
vars : Sequence[Variable] | ||
A sequence of variables for which the Laplace approximation of the posterior distribution | ||
is to be created. | ||
draws : Optional[int] with default=1_000 | ||
The number of draws to sample from the posterior distribution for creating the approximation. | ||
For draws=None only the fit of the Laplace approximation is returned | ||
model : object, optional, default=None | ||
The model object that defines the posterior distribution. If None, the default model will be used. | ||
random_seed : Optional[RandomSeed], optional, default=None | ||
An optional random seed to ensure reproducibility of the draws. If None, the draws will be | ||
generated using the current random state. | ||
progressbar: bool, optional defaults to True | ||
Whether to display a progress bar in the command line. | ||
Returns | ||
------- | ||
arviz.InferenceData | ||
An `InferenceData` object from the `arviz` library containing the Laplace | ||
approximation of the posterior distribution. The inferenceData object also | ||
contains constant and observed data as well as deterministic variables. | ||
InferenceData also contains a group 'fit' with the mean and covariance | ||
for the Laplace approximation. | ||
Examples | ||
-------- | ||
>>> import numpy as np | ||
>>> import pymc as pm | ||
>>> import arviz as az | ||
>>> from pymc_experimental.inference.laplace import laplace | ||
>>> y = np.array([2642, 3503, 4358]*10) | ||
>>> with pm.Model() as m: | ||
>>> logsigma = pm.Uniform("logsigma", 1, 100) | ||
>>> mu = pm.Uniform("mu", -10000, 10000) | ||
>>> yobs = pm.Normal("y", mu=mu, sigma=pm.math.exp(logsigma), observed=y) | ||
>>> idata = laplace([mu, logsigma], model=m) | ||
Notes | ||
----- | ||
This method of approximation may not be suitable for all types of posterior distributions, | ||
especially those with significant skewness or multimodality. | ||
See Also | ||
-------- | ||
fit : Calling the inference function 'fit' like pmx.fit(method="laplace", vars=[mu, logsigma], model=m) | ||
will forward the call to 'laplace'. | ||
""" | ||
|
||
rng = np.random.default_rng(seed=random_seed) | ||
|
||
transformed_m = pm.modelcontext(model) | ||
|
||
if len(vars) != len(transformed_m.free_RVs): | ||
warnings.warn( | ||
"Number of variables in vars does not eqaul the number of variables in the model.", | ||
UserWarning, | ||
) | ||
|
||
map = pm.find_MAP(vars=vars, progressbar=progressbar, model=transformed_m) | ||
|
||
# See https://www.pymc.io/projects/docs/en/stable/api/model/generated/pymc.model.transform.conditioning.remove_value_transforms.html | ||
untransformed_m = remove_value_transforms(transformed_m) | ||
untransformed_vars = [untransformed_m[v.name] for v in vars] | ||
hessian = pm.find_hessian(point=map, vars=untransformed_vars, model=untransformed_m) | ||
|
||
if np.linalg.det(hessian) == 0: | ||
raise np.linalg.LinAlgError("Hessian is singular.") | ||
|
||
cov = np.linalg.inv(hessian) | ||
mean = np.concatenate([np.atleast_1d(map[v.name]) for v in vars]) | ||
|
||
chains = 1 | ||
|
||
if draws is not None: | ||
samples = rng.multivariate_normal(mean, cov, size=(chains, draws)) | ||
|
||
data_vars = {} | ||
for i, var in enumerate(vars): | ||
data_vars[str(var)] = xr.DataArray(samples[:, :, i], dims=("chain", "draw")) | ||
|
||
coords = {"chain": np.arange(chains), "draw": np.arange(draws)} | ||
ds = xr.Dataset(data_vars, coords=coords) | ||
|
||
idata = az.convert_to_inference_data(ds) | ||
idata = addDataToInferenceData(model, idata, progressbar) | ||
else: | ||
idata = az.InferenceData() | ||
|
||
idata = addFitToInferenceData(vars, idata, mean, cov) | ||
|
||
return idata | ||
|
||
|
||
def addFitToInferenceData(vars, idata, mean, covariance): | ||
coord_names = [v.name for v in vars] | ||
# Convert to xarray DataArray | ||
mean_dataarray = xr.DataArray(mean, dims=["rows"], coords={"rows": coord_names}) | ||
cov_dataarray = xr.DataArray( | ||
covariance, dims=["rows", "columns"], coords={"rows": coord_names, "columns": coord_names} | ||
) | ||
|
||
# Create xarray dataset | ||
dataset = xr.Dataset({"mean_vector": mean_dataarray, "covariance_matrix": cov_dataarray}) | ||
|
||
idata.add_groups(fit=dataset) | ||
|
||
return idata | ||
|
||
|
||
def addDataToInferenceData(model, trace, progressbar): | ||
# Add deterministic variables to inference data | ||
trace.posterior = pm.compute_deterministics( | ||
trace.posterior, model=model, merge_dataset=True, progressbar=progressbar | ||
) | ||
|
||
coords, dims = coords_and_dims_for_inferencedata(model) | ||
|
||
observed_data = dict_to_dataset( | ||
find_observations(model), | ||
library=pm, | ||
coords=coords, | ||
dims=dims, | ||
default_dims=[], | ||
) | ||
|
||
constant_data = dict_to_dataset( | ||
find_constants(model), | ||
library=pm, | ||
coords=coords, | ||
dims=dims, | ||
default_dims=[], | ||
) | ||
|
||
trace.add_groups( | ||
{"observed_data": observed_data, "constant_data": constant_data}, | ||
coords=coords, | ||
dims=dims, | ||
) | ||
|
||
return trace |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
# Copyright 2024 The PyMC Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import numpy as np | ||
import pymc as pm | ||
import pytest | ||
|
||
import pymc_experimental as pmx | ||
|
||
|
||
@pytest.mark.filterwarnings( | ||
"ignore:hessian will stop negating the output in a future version of PyMC.\n" | ||
+ "To suppress this warning set `negate_output=False`:FutureWarning", | ||
) | ||
def test_laplace(): | ||
|
||
# Example originates from Bayesian Data Analyses, 3rd Edition | ||
# By Andrew Gelman, John Carlin, Hal Stern, David Dunson, | ||
# Aki Vehtari, and Donald Rubin. | ||
# See section. 4.1 | ||
|
||
y = np.array([2642, 3503, 4358], dtype=np.float64) | ||
n = y.size | ||
draws = 100000 | ||
|
||
with pm.Model() as m: | ||
logsigma = pm.Uniform("logsigma", 1, 100) | ||
mu = pm.Uniform("mu", -10000, 10000) | ||
yobs = pm.Normal("y", mu=mu, sigma=pm.math.exp(logsigma), observed=y) | ||
vars = [mu, logsigma] | ||
|
||
idata = pmx.fit( | ||
method="laplace", | ||
vars=vars, | ||
model=m, | ||
draws=draws, | ||
random_seed=173300, | ||
) | ||
|
||
assert idata.posterior["mu"].shape == (1, draws) | ||
assert idata.posterior["logsigma"].shape == (1, draws) | ||
assert idata.observed_data["y"].shape == (n,) | ||
assert idata.fit["mean_vector"].shape == (len(vars),) | ||
assert idata.fit["covariance_matrix"].shape == (len(vars), len(vars)) | ||
|
||
bda_map = [y.mean(), np.log(y.std())] | ||
bda_cov = np.array([[y.var() / n, 0], [0, 1 / (2 * n)]]) | ||
|
||
assert np.allclose(idata.fit["mean_vector"].values, bda_map) | ||
assert np.allclose(idata.fit["covariance_matrix"].values, bda_cov, atol=1e-4) | ||
|
||
|
||
@pytest.mark.filterwarnings( | ||
"ignore:hessian will stop negating the output in a future version of PyMC.\n" | ||
+ "To suppress this warning set `negate_output=False`:FutureWarning", | ||
) | ||
def test_laplace_only_fit(): | ||
|
||
# Example originates from Bayesian Data Analyses, 3rd Edition | ||
# By Andrew Gelman, John Carlin, Hal Stern, David Dunson, | ||
# Aki Vehtari, and Donald Rubin. | ||
# See section. 4.1 | ||
|
||
y = np.array([2642, 3503, 4358], dtype=np.float64) | ||
n = y.size | ||
|
||
with pm.Model() as m: | ||
logsigma = pm.Uniform("logsigma", 1, 100) | ||
mu = pm.Uniform("mu", -10000, 10000) | ||
yobs = pm.Normal("y", mu=mu, sigma=pm.math.exp(logsigma), observed=y) | ||
vars = [mu, logsigma] | ||
|
||
idata = pmx.fit( | ||
method="laplace", | ||
vars=vars, | ||
draws=None, | ||
model=m, | ||
random_seed=173300, | ||
) | ||
|
||
assert idata.fit["mean_vector"].shape == (len(vars),) | ||
assert idata.fit["covariance_matrix"].shape == (len(vars), len(vars)) | ||
|
||
bda_map = [y.mean(), np.log(y.std())] | ||
bda_cov = np.array([[y.var() / n, 0], [0, 1 / (2 * n)]]) | ||
|
||
assert np.allclose(idata.fit["mean_vector"].values, bda_map) | ||
assert np.allclose(idata.fit["covariance_matrix"].values, bda_cov, atol=1e-4) | ||
|
||
|
||
@pytest.mark.filterwarnings( | ||
"ignore:hessian will stop negating the output in a future version of PyMC.\n" | ||
+ "To suppress this warning set `negate_output=False`:FutureWarning", | ||
) | ||
def test_laplace_subset_of_rv(recwarn): | ||
|
||
# Example originates from Bayesian Data Analyses, 3rd Edition | ||
# By Andrew Gelman, John Carlin, Hal Stern, David Dunson, | ||
# Aki Vehtari, and Donald Rubin. | ||
# See section. 4.1 | ||
|
||
y = np.array([2642, 3503, 4358], dtype=np.float64) | ||
n = y.size | ||
|
||
with pm.Model() as m: | ||
logsigma = pm.Uniform("logsigma", 1, 100) | ||
mu = pm.Uniform("mu", -10000, 10000) | ||
yobs = pm.Normal("y", mu=mu, sigma=pm.math.exp(logsigma), observed=y) | ||
vars = [mu] | ||
|
||
idata = pmx.fit( | ||
method="laplace", | ||
vars=vars, | ||
draws=None, | ||
model=m, | ||
random_seed=173300, | ||
) | ||
|
||
assert len(recwarn) == 3 | ||
w = recwarn.pop(UserWarning) | ||
assert issubclass(w.category, UserWarning) | ||
assert ( | ||
str(w.message) | ||
== "Number of variables in vars does not eqaul the number of variables in the model." | ||
) |