Skip to content

pqy000/Deeplearning2020

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning for Interpretable Time Series forecasting

Course project of Interpretable Time Series forecasting

Dataset

The data should be downloaded into the data/

Dataset can be downloaded from

https://cloud.tsinghua.edu.cn/d/8d99739d05f0464f8986/

If there are something wrong with the Data, please go ahead

https://github.com/laiguokun/multivariate-time-series-data/

The car dataset is from (547M)

https://cloud.tsinghua.edu.cn/f/1c1e8349a7a747fea07a/?dl=1

Environment

  • Python 3.6+
  • Pytorch 1.0+
  • numpy

Model

The best model is saved in the directory save/

Example

  1. Traffic dataset: traffic.sh
  2. Solar-Energy dataset:solar.sh
  3. Electricity usage dataset: ele.sh

Instruction

main.py

  • --data DATA location of the data file
  • -h --help show this help message and exit
  • --model DATA select the model: LSTNet, CNN, RNN or MHA_Net
  • --window WINDOW window size (history size)
  • --horizon HORIZON forecasting horizon(step)
  • --hidRNN HIDRNN number of RNN hidden units each layer
  • --rnn_layers RNN_LAYERS number of RNN hidden layers
  • --hidCNN HIDCNN number of CNN hidden units (channels)
  • --CNN_kernel CNN_KERNEL the kernel size of the CNN layers
  • --highway_window HIGHWAY_WINDOW The window size of the highway component
  • -n_head N_HEAD num of self attention heads
  • -d_k D_K self attention key dimension
  • -d_v D_V self attention value dimension
  • --clip CLIP gradient clipping limit
  • --epochs EPOCHS upper epoch limit
  • --batch_size N batch_size
  • --dropout DROPOUT dropout applied to layers (0 = no dropout)
  • --seed SEED random seed
  • --log_interval N report interval
  • --save SAVE path to save the final model'
  • --cuda CUDA whether to use cuda device
  • --optim OPTIM optimizer method ,default 'adam'
  • --amsgrad AMSGRAD whether to use amsgrad
  • --lr LR learning rate
  • --skip SKIP autoregression window size
  • --hidSkip HIDSKIP skiphidden states dimension
  • --L1Loss L1LOSS whether to use l1 loss function
  • --normalize NORMALIZE whether to normalize the data
  • --output_fun OUTPUT_FUN relu, tanh or sigmoid

About

course project of Deep learning 2020 Spring

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •