Skip to content
/ LLMling Public

Easy MPC (Model Context Protocol) servers and AI agents, defined as YAML.

License

Notifications You must be signed in to change notification settings

phil65/LLMling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLMling

PyPI License Package status Daily downloads Weekly downloads Monthly downloads Distribution format Wheel availability Python version Implementation Releases Github Contributors Github Discussions Github Forks Github Issues Github Issues Github Watchers Github Stars Github Repository size Github last commit Github release date Github language count Github commits this week Github commits this month Github commits this year Package status Code style: black PyUp

A framework for declarative LLM application development focused on resource management, prompt templates, and tool execution.

This package provides the backend for two consumers: A MCP server and a pydantic-AI based Agent

Core Concepts

LLMLing provides a YAML-based configuration system for LLM applications. It allows to set up custom MPC servers serving content defined in YAML files.

  • Static Declaration: Define your LLM's environment in YAML - no code required
  • MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
  • Component Types:
    • Resources: Content providers (files, text, CLI output, etc.)
    • Prompts: Message templates with arguments
    • Tools: Python functions callable by the LLM

The YAML configuration creates a complete environment that provides the LLM with:

  • Access to content via resources

  • Structured prompts for consistent interaction

  • Tools for extending capabilities

  • Written from ground up in modern python (minimum 3.12 required)

  • 100% typed

  • pydantic(-ai) based

An overview about the whole system:

graph TB
    subgraph LLMling[LLMling Core Package]
        RT[RuntimeConfig]

        subgraph Core_Components[Core Components]
            Resources[Resource Management<br/>- Load files/URLs<br/>- Process content<br/>- Watch changes]
            Tools[Tool System<br/>- Execute functions<br/>- Register new tools<br/>- OpenAPI integration]
            Prompts[Prompt System<br/>- Static/Dynamic prompts<br/>- Template rendering<br/>- Completion support]
        end

        CLI[Core CLI<br/>- config add/remove/list<br/>- resource list/load<br/>- tool list/execute<br/>- prompt list/render]

        Core_Components -->|YAML configuration| RT
        RT -->|All components| CLI
        CLI -->|modify| Core_Components
    end

    subgraph Direct_Access[mcp-server-llmling<br/>Direct Component Access]
        MCP[HTTP/SSE Server<br/>- Start/Stop server]
        MCP_CLI[Server CLI<br/>- Start/Stop server]
        Injection[Injection Server<br/>- Inject components<br/>during runtime]
    end

    subgraph Function_Access[llmling-agent<br/>Access via Function Calling]
        LLM[LLM Integration<br/>- Function calling<br/>- Resource access<br/>- Tool execution<br/>- Structured output]
        Agent_CLI[Agent CLI<br/>- One-shot execution<br/>- Batch processing]
        Agent_Web[Agent Web UI<br/>- Interactive chat]
    end

    RT -->|All components| MCP
    RT -->|Resources & Tools<br/>via function calling| LLM
    MCP_CLI --> CLI
    Agent_CLI --> CLI

    classDef core fill:#e1f5fe,stroke:#01579b
    classDef comp fill:#e3f2fd,stroke:#1565c0
    classDef cli fill:#fff3e0,stroke:#e65100
    classDef mcp fill:#f3e5f5,stroke:#4a148c
    classDef agent fill:#e8f5e9,stroke:#1b5e20
    classDef access fill:#e8eaf6,stroke:#666
    classDef serverBox fill:#7986cb,stroke:#3949ab
    classDef agentBox fill:#81c784,stroke:#2e7d32

    class RT core
    class Resources,Tools,Prompts comp
    class CLI,MCP_CLI,Agent_CLI cli
    class MCP,Injection mcp
    class LLM,Agent_Web agent
    class Direct_Access serverBox
    class Function_Access agentBox
Loading

Usage

1. CLI Usage

Create a basic configuration file:

# Create a new config file with basic settings
llmling config init my_config.yml

# Add it to your stored configs
llmling config add myconfig my_config.yml
llmling config set myconfig  # Make it active

Basic CLI commands:

# List available resources
llmling resource list

# Load a resource
llmling resource load python_files

# Execute a tool
llmling tool call open_url url=https://github.com

# Show a prompt
llmling prompt show greet

# Many more commands. The CLI will get extended when installing
# llmling-agent and mcp-server-llmling

2. Agent Usage (powered by pydantic-AI)

Create a configuration file (config.yml):

tools:
  open_url:
    import_path: "webbrowser.open"

resources:
  bookmarks:
    type: text
    description: "Common Python URLs"
    content: |
      Python Website: https://python.org

Use the agent with this configuration:

from llmling import RuntimeConfig
from llmling_agent import LLMlingAgent
from pydantic import BaseModel

class WebResult(BaseModel):
    opened_url: str
    success: bool

async with RuntimeConfig.open("config.yml") as runtime:
    agent = LLMlingAgent[WebResult](runtime)
    result = await agent.run(
        "Load the bookmarks resource and open the Python website URL"
    )
    print(f"Opened: {result.data.opened_url}")

The agent will:

  1. Load the bookmarks resource
  2. Extract the Python website URL
  3. Use the open_url tool to open it
  4. Return the structured result

3. Server Usage

With Zed Editor

Add LLMLing as a context server in your settings.json:

{
  "context_servers": {
    "llmling": {
      "command": {
        "env": {},
        "label": "llmling",
        "path": "uvx",
        "args": [
          "mcp-server-llmling@latest",
          "start",
          "path/to/your/config.yml",
          "--zed-mode"
        ]
      },
      "settings": {}
    }
  }
}

With Claude Desktop

Configure LLMLing in your claude_desktop_config.json:

{
  "mcpServers": {
    "llmling": {
      "command": "uvx",
      "args": [
        "mcp-server-llmling@latest",
        "start",
        "path/to/your/config.yml"
      ],
      "env": {}
    }
  }
}

Manual Server Start

Start the server directly from command line:

# Latest version
uvx mcp-server-llmling@latest start path/to/your/config.yml

Resources

Resources are content providers that load and pre-process data from various sources.

Basic Resource Types

global_config:  # declare dependencies if used for tools or function prompts
  requirements: ["myapp"]
  scripts:
    - "https://gist.githubusercontent.com/.../get_readme.py"


resources:
  # Load and watch a file or directory
  python_files:
    type: path
    path: "./src/**/*.py"  # Glob patterns supported
    watch:  # Optional file watching
      enabled: true
      patterns:
        - "*.py"
        - "!**/__pycache__/**"  # Exclude patterns with !
    processors:  # Optional processing steps
      - name: format_python
      - name: add_header
        required: false  # Optional step

  # Static text content
  system_prompt:
    type: text
    content: |
      You are a code reviewer specialized in Python.
      Focus on these aspects:
      - Code style (PEP8)
      - Best practices
      - Performance
      - Security

  # Execute CLI commands
  git_changes:
    type: cli
    command: "git diff HEAD~1"  # String or list of args
    shell: true  # Use shell for command
    cwd: "./src"  # Optional working directory
    timeout: 5.0  # Optional timeout in seconds

  # Load Python source code
  utils_module:
    type: source
    import_path: myapp.utils
    recursive: true  # Include submodules
    include_tests: false  # Exclude test files

  # Execute Python callables
  system_info:
    type: callable
    import_path: platform.uname
    keyword_args:  # Optional arguments
      aliased: true

Resource Groups

Group related resources for easier access:

resource_groups:
  code_review:
    - python_files
    - git_changes
    - system_prompt

  documentation:
    - architecture
    - utils_module

File Watching

Resources supporting file watching (path, image) can be configured to detect changes:

resources:
  config_files:
    type: path
    path: "./config"
    watch:
      enabled: true
      patterns:  # .gitignore style patterns
        - "*.yml"
        - "*.yaml"
        - "!.private/**"  # Exclude private files
      ignore_file: ".gitignore"  # Use existing ignore file

Resource Processing

Resources can be processed through a pipeline of processors:

# First define processors
context_processors:
  uppercase:
    type: function
    import_path: myapp.processors.to_upper
    async_execution: false  # Sync function

# Then use them in resources
resources:
  processed_file:
    type: path
    path: "./input.txt"
    processors:
      - name: uppercase

Prompts

Prompts are message templates that can be formatted with arguments. LLMLing supports both declarative YAML prompts and function-based prompts.

YAML-Based Prompts

prompts:
  code_review:
    description: "Review Python code changes"
    messages:
      - role: system
        content: |
          You are a Python code reviewer. Focus on:
          - Code style (PEP8)
          - Best practices
          - Performance
          - Security

          Always structure your review as:
          1. Summary
          2. Issues Found
          3. Suggestions

      - role: user
        content: |
          Review the following code changes:

          {code}

          Focus areas: {focus_areas}

    arguments:
      - name: code
        description: "Code to review"
        required: true
      - name: focus_areas
        description: "Specific areas to focus on (one of: style, security, performance)"
        required: false
        default: "style"

Function-Based Prompts

Function-based prompts provide more control and enable auto-completion:

prompts:
  analyze_code:
    # Import path to the prompt function
    import_path: myapp.prompts.code_analysis
    # Optional overrides
    name: "Code Analysis"
    description: "Analyze Python code structure and complexity"
    # Optional message template override
    template: |
      Analyze this code: {code}
      Focus on: {focus}
    # Auto-completion functions for arguments
    completions:
      focus: myapp.prompts.get_analysis_focus_options
# myapp/prompts/code_analysis.py
from typing import Literal

FocusArea = Literal["complexity", "dependencies", "typing"]

def code_analysis(
    code: str,
    focus: FocusArea = "complexity",
    include_metrics: bool = True
) -> list[dict[str, str]]:
    """Analyze Python code structure and complexity.

    Args:
        code: Python source code to analyze
        focus: Analysis focus area (one of: complexity, dependencies, typing)
        include_metrics: Whether to include numeric metrics
    """
    # Function will be converted to a prompt automatically
    ...

def get_analysis_focus_options(current: str) -> list[str]:
    """Provide auto-completion for focus argument."""
    options = ["complexity", "dependencies", "typing"]
    return [opt for opt in options if opt.startswith(current)]

Message Content Types

Prompts support different content types:

prompts:
  document_review:
    messages:
      # Text content
      - role: system
        content: "You are a document reviewer..."

      # Resource reference
      - role: user
        content:
          type: resource
          content: "document://main.pdf"
          alt_text: "Main document content"

      # Image content
      - role: user
        content:
          type: image_url
          content: "https://example.com/diagram.png"
          alt_text: "System architecture diagram"

Argument Validation

Prompts validate arguments before formatting:

prompts:
  analyze:
    messages:
      - role: user
        content: "Analyze with level {level}"

    arguments:
      - name: level
        description: "Analysis depth (one of: basic, detailed, full)"
        required: true
        # Will be used for validation and auto-completion
        type_hint: Literal["basic", "detailed", "full"]

Tools

Tools are Python functions or classes that can be called by the LLM. They provide a safe way to extend the LLM's capabilities with custom functionality.

Basic Tool Configuration

tools:
  # Function-based tool
  analyze_code:
    import_path: myapp.tools.code.analyze
    description: "Analyze Python code structure and metrics"

  # Class-based tool
  browser:
    import_path: llmling.tools.browser.BrowserTool
    description: "Control web browser for research"

  # Override tool name
  code_metrics:
    import_path: myapp.tools.analyze_complexity
    name: "Analyze Code Complexity"
    description: "Calculate code complexity metrics"

# Include pre-built tool collections
toolsets:
  - llmling.code  # Code analysis tools
  - llmling.web   # Web/browser tools

Toolsets

Toolsets are, like the name says, a collection of tools. Right now LLMling supports:

  • Extension point system
  • OpenAPI endpoints
  • class-based toolsets

Function-Based Tools

Tools can be created from any Python function:

# myapp/tools/code.py
from typing import Any
import ast

async def analyze(
    code: str,
    include_metrics: bool = True
) -> dict[str, Any]:
    """Analyze Python code structure and complexity.

    Args:
        code: Python source code to analyze
        include_metrics: Whether to include numeric metrics

    Returns:
        Dictionary with analysis results
    """
    tree = ast.parse(code)
    return {
        "classes": len([n for n in ast.walk(tree) if isinstance(n, ast.ClassDef)]),
        "functions": len([n for n in ast.walk(tree) if isinstance(n, ast.FunctionDef)]),
        "complexity": _calculate_complexity(tree) if include_metrics else None
    }

Class-Based Tools

Complex tools can be implemented as classes:

# myapp/tools/browser.py
from typing import Literal
from playwright.async_api import Page
from llmling.tools.base import BaseTool

class BrowserTool(BaseTool):
    """Tool for web browser automation."""

    name = "browser"
    description = "Control web browser to navigate and interact with web pages"

    ...

    def get_tools(self):
        return [self.open_url, self.click_button]

Tool Collections (Toolsets)

Group related tools into reusable collections:

# myapp/toolsets.py
from typing import Callable, Any

def get_mcp_tools() -> list[Callable[..., Any]]:
    """Entry point exposing tools to LLMling."""
    from myapp.tools import (
        analyze_code,
        check_style,
        count_tokens
    )
    return [
        analyze_code,
        check_style,
        count_tokens
    ]

In pyproject.toml:

[project.entry-points.llmling]
tools = "llmling.testing:get_mcp_tools"

Tool Progress Reporting

Tools can report progress to the client:

from llmling.tools.base import BaseTool

class AnalysisTool(BaseTool):
    name = "analyze"
    description = "Analyze large codebase"

    async def execute(
        self,
        path: str,
        _meta: dict[str, Any] | None = None,  # Progress tracking
    ) -> dict[str, Any]:
        files = list(Path(path).glob("**/*.py"))
        results = []

        for i, file in enumerate(files):
            # Report progress if meta information provided
            if _meta and "progressToken" in _meta:
                self.notify_progress(
                    token=_meta["progressToken"],
                    progress=i,
                    total=len(files),
                    description=f"Analyzing {file.name}"
                )

            results.append(await self._analyze_file(file))

        return {"results": results}

Complete Tool Example

Here's a complete example combining multiple tool features:

# Configuration
tools:
  # Basic function tool
  analyze:
    import_path: myapp.tools.code.analyze

  # Class-based tool with lifecycle
  browser:
    import_path: myapp.tools.browser.BrowserTool

  # Tool with progress reporting
  batch_analysis:
    import_path: myapp.tools.AnalysisTool

toolsets:
  - llmling.code
  - myapp.tools
# Tool implementation
from typing import Any
from pathlib import Path
from llmling.tools.base import BaseTool

class AnalysisTool(BaseTool):
    """Tool for batch code analysis with progress reporting."""

    name = "batch_analysis"
    description = "Analyze multiple Python files"

    async def startup(self) -> None:
        """Initialize analysis engine."""
        self.analyzer = await self._create_analyzer()

    async def execute(
        self,
        path: str,
        recursive: bool = True,
        _meta: dict[str, Any] | None = None
    ) -> dict[str, Any]:
        """Execute batch analysis.

        Args:
            path: Directory to analyze
            recursive: Whether to analyze subdirectories
            _meta: Optional progress tracking metadata
        """
        files = list(Path(path).glob("**/*.py" if recursive else "*.py"))
        results = []

        for i, file in enumerate(files, 1):
            # Report progress
            if _meta and "progressToken" in _meta:
                self.notify_progress(
                    token=_meta["progressToken"],
                    progress=i,
                    total=len(files),
                    description=f"Analyzing {file.name}"
                )

            # Analyze file
            try:
                result = await self.analyzer.analyze_file(file)
                results.append({
                    "file": str(file),
                    "metrics": result
                })
            except Exception as e:
                results.append({
                    "file": str(file),
                    "error": str(e)
                })

        return {
            "total_files": len(files),
            "successful": len([r for r in results if "metrics" in r]),
            "failed": len([r for r in results if "error" in r]),
            "results": results
        }

    async def shutdown(self) -> None:
        """Clean up analysis engine."""
        await self.analyzer.close()

More: (ATTENTION: THESE ARE MOSTLY AI GENERATED AND OUTDATED, NO GUARANTEE FOR CORRECTNESS) introduction quick_example usage yaml_config CLI

resources prompts tools server extending