Skip to content

petuum/pollux-results

Repository files navigation

Pollux Testbed Experiments Results

This repository contains the raw experiment logs and analysis scripts for reproducing the results presented in Section 5.2 of the OSDI 2021 paper "Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning". To get started, we recommend using a virtualenv or conda environment:

$ conda create -n pollux python=3.8
$ conda activate pollux
$ python3 -m pip install seaborn dateutil

Decompress all results files:

$ unzip '*.zip'

The results can then be reproduced using the commands below.

Reproducing Table 2

  • Pollux (p = -1): python calc_jcts.py pollux-p-1-a
  • Optimus+Oracle+TunedJobs: python calc_jcts.py optimus-tunedjobs
  • Tiresias+TunedJobs: python calc_jcts.py tiresias-tunedjobs
  • Optimus+Oracle: python calc_jcts.py optimus-realistic
  • Tiresias: python calc_jcts.py tiresias-realistic
  • Pollux (p = +1): python calc_jcts.py pollux-p1
  • Pollux (p = -10): python calc_jcts.py pollux-p-10

Reproducing Figure 5

  • Figure 5a: python plot_cluster.py --value allocation pollux-p-1-a optimus-tunedjobs tiresias-tunedjobs
  • Figure 5b: python plot_cluster.py --value efficiency pollux-p-1-a optimus-tunedjobs tiresias-tunedjobs

Reproducing Figure 6

  • Left Row 1: python plot_imagenet.py --value jobs pollux-p-1-b
  • Left Row 2: python plot_imagenet.py --value gpus pollux-p-1-b
  • Left Row 3: python plot_imagenet.py --value bsz pollux-p-1-b
  • Left Row 4: python plot_imagenet.py --value eff pollux-p-1-b
  • Right Row 1: python plot_yolov3.py --value jobs pollux-p-1-a
  • Right Row 2: python plot_yolov3.py --value gpus pollux-p-1-a
  • Right Row 3: python plot_yolov3.py --value bsz pollux-p-1-a
  • Right Row 4: python plot_yolov3.py --value eff pollux-p-1-a

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages