Skip to content

pej0918/BLIVA

 
 

Improving VQA Using MLLM

image

Train

After downloading the training datasets and specify their path in dataset configs, we are ready for training!

  1. Setting Environments
conda create -n fusion python=3.9
git clone 
cd BLIVA
pip install -e .

if packaging error, then

pip install setuptools==69.5.1
  1. pretraining of Dm-Former
python train.py --cfg-path train_configs/pretrain_stage1.yaml
  1. Pretraining of visual assistant branch

you should specify model path in pretrained

python train.py --cfg-path train_configs/pretrain_bliva_vicuna.yaml
  1. Instruction Finetuning
python 

About

No description, website, or topics provided.

Resources

License

BSD-3-Clause and 2 other licenses found

Licenses found

BSD-3-Clause
LICENSE.md
Apache-2.0
LICENSE_BLIVA_FLANT5_WEIGHT.md
BSD-3-Clause
LICENSE_LAVIS.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%