-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
266 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,266 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "_05_Model_Subclasing.ipynb", | ||
"provenance": [], | ||
"mount_file_id": "1-k_qtZZcggknjSVXp9p7CXO8wEn-sbky", | ||
"authorship_tag": "ABX9TyNC1qEIuBtkJBTNtm3CNxk1", | ||
"include_colab_link": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"accelerator": "GPU" | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/palash04/Artificial-Intelligence/blob/master/Tensorflow_Series/_05_Model_Subclasing.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "UxOBaIw9X1FQ", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"import tensorflow as tf\n", | ||
"from tensorflow import keras\n", | ||
"from tensorflow.keras import layers\n", | ||
"from tensorflow.keras.datasets import mnist" | ||
], | ||
"execution_count": 2, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "fCQOP7sTYcZX", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 51 | ||
}, | ||
"outputId": "1ddb4bb8-be48-4dad-bbe0-05c5d5745fe2" | ||
}, | ||
"source": [ | ||
"(x_train, y_train), (x_test, y_test) = mnist.load_data()" | ||
], | ||
"execution_count": 3, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n", | ||
"11493376/11490434 [==============================] - 0s 0us/step\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "bZlapcutYkpd", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 34 | ||
}, | ||
"outputId": "fb2f4212-1f32-48b8-e568-b7673751a990" | ||
}, | ||
"source": [ | ||
"x_train.shape" | ||
], | ||
"execution_count": 4, | ||
"outputs": [ | ||
{ | ||
"output_type": "execute_result", | ||
"data": { | ||
"text/plain": [ | ||
"(60000, 28, 28)" | ||
] | ||
}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": 4 | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "oL17bPyWYqhI", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"x_train = x_train.reshape(-1, 28, 28, 1).astype(\"float32\") / 255.0\n", | ||
"x_test = x_test.reshape(-1, 28, 28, 1).astype(\"float32\") / 255.0" | ||
], | ||
"execution_count": 5, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "YLUO1utUY4km", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 34 | ||
}, | ||
"outputId": "c2b16757-35b2-4b30-d0ba-ab8cfa66e082" | ||
}, | ||
"source": [ | ||
"x_train.shape" | ||
], | ||
"execution_count": 6, | ||
"outputs": [ | ||
{ | ||
"output_type": "execute_result", | ||
"data": { | ||
"text/plain": [ | ||
"(60000, 28, 28, 1)" | ||
] | ||
}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": 6 | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "aRTfpyl6Y5Y_", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"class CNNBLOCK(layers.Layer):\n", | ||
" def __init__(self, out_channels, kernel_size=3):\n", | ||
" super(CNNBLOCK, self).__init__()\n", | ||
" self.conv = layers.Conv2D(out_channels, kernel_size, padding='same')\n", | ||
" self.bn = layers.BatchNormalization()\n", | ||
" \n", | ||
" def call(self, input_tensor, training=False):\n", | ||
" x = self.conv(input_tensor)\n", | ||
" x = self.bn(x, training=training)\n", | ||
" x = tf.nn.relu(x)\n", | ||
" return x" | ||
], | ||
"execution_count": 8, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "xmG4bMWOZLGP", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"model = keras.Sequential(\n", | ||
" [\n", | ||
" CNNBLOCK(32),\n", | ||
" CNNBLOCK(64),\n", | ||
" CNNBLOCK(128),\n", | ||
" layers.Flatten(),\n", | ||
" layers.Dense(10),\n", | ||
" ]\n", | ||
")" | ||
], | ||
"execution_count": 9, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "-FlPxSGiaMDQ", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 391 | ||
}, | ||
"outputId": "0863d794-c03f-4030-8d37-3cbba17a7eec" | ||
}, | ||
"source": [ | ||
"model.compile(\n", | ||
" optimizer = keras.optimizers.Adam(lr=0.001),\n", | ||
" loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", | ||
" metrics=[\"accuracy\"]\n", | ||
")\n", | ||
"model.fit(x_train, y_train, batch_size=64, epochs=10,verbose=1)\n", | ||
"model.evaluate(x_test,y_test,batch_size=64,verbose=1)" | ||
], | ||
"execution_count": 11, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch 1/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.5911 - accuracy: 0.9479\n", | ||
"Epoch 2/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0937 - accuracy: 0.9813\n", | ||
"Epoch 3/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0367 - accuracy: 0.9892\n", | ||
"Epoch 4/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0266 - accuracy: 0.9912\n", | ||
"Epoch 5/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0253 - accuracy: 0.9922\n", | ||
"Epoch 6/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0222 - accuracy: 0.9924\n", | ||
"Epoch 7/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0197 - accuracy: 0.9935\n", | ||
"Epoch 8/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0160 - accuracy: 0.9946\n", | ||
"Epoch 9/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0134 - accuracy: 0.9956\n", | ||
"Epoch 10/10\n", | ||
"938/938 [==============================] - 11s 11ms/step - loss: 0.0108 - accuracy: 0.9962\n", | ||
"157/157 [==============================] - 1s 5ms/step - loss: 0.0472 - accuracy: 0.9874\n" | ||
], | ||
"name": "stdout" | ||
}, | ||
{ | ||
"output_type": "execute_result", | ||
"data": { | ||
"text/plain": [ | ||
"[0.04721549525856972, 0.9873999953269958]" | ||
] | ||
}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": 11 | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "Rpbe8CvXaRQh", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
} | ||
] | ||
} |