-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support Vector Machines Algorithm added
- Loading branch information
1 parent
c6798c0
commit 65ed547
Showing
2 changed files
with
91 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
%%%-------------Support Vector Machines (SVM) | ||
|
||
%---------------Importing Dataset | ||
data = readtable('C:\Users\Asus\Desktop\necessary\Naive Bayes\Social_Network_Ads.csv'); | ||
|
||
%---------------Feature Scaling (Standardization Method) | ||
stand_age = (data.Age - mean(data.Age))/std(data.Age); | ||
data.Age = stand_age; | ||
|
||
stand_estimted_salary = (data.EstimatedSalary - mean(data.EstimatedSalary))/std(data.EstimatedSalary); | ||
data.EstimatedSalary = stand_estimted_salary; | ||
|
||
%---------------Classifying Data | ||
classification_model = fitcsvm(data,'Purchased~Age+EstimatedSalary'); | ||
% Uses normal distribution as default | ||
% classification_model = fitcnb(normalized_data, 'Survived~Age+Fare+Parch+SibSp+female+male+Pclass','Distribution','kernel'); | ||
|
||
%---------------Partitioning | ||
cv = cvpartition(classification_model.NumObservations, 'HoldOut', 0.2); | ||
cross_validated_model = crossval(classification_model,'cvpartition',cv); | ||
|
||
%---------------Predictions | ||
Predictions = predict(cross_validated_model.Trained{1},data(test(cv),1:end-1)); | ||
|
||
%---------------Analyzing the Results | ||
Results = confusionmat(cross_validated_model.Y(test(cv)),Predictions); | ||
|
||
%---------------Visualizing Training Results | ||
labels = unique(data.Purchased); | ||
classifier_name = 'SVM (Training Results)'; | ||
|
||
Age_range = min(data.Age(training(cv)))-1:0.01:max(data.Age(training(cv)))+1; | ||
Estimated_salary_range = min(data.EstimatedSalary(training(cv)))-1:0.01:max(data.EstimatedSalary(training(cv)))+1; | ||
|
||
[xx1, xx2] = meshgrid(Age_range,Estimated_salary_range); | ||
XGrid = [xx1(:) xx2(:)]; | ||
|
||
predictions_meshgrid = predict(cross_validated_model.Trained{1},XGrid); | ||
|
||
gscatter(xx1(:), xx2(:), predictions_meshgrid,'rgb'); | ||
|
||
hold on | ||
|
||
training_data = data(training(cv),:); | ||
Y = ismember(training_data.Purchased,labels{1}); | ||
|
||
scatter(training_data.Age(Y),training_data.EstimatedSalary(Y), 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'red'); | ||
scatter(training_data.Age(~Y),training_data.EstimatedSalary(~Y) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'green'); | ||
|
||
xlabel('Age'); | ||
ylabel('Estimated Salary'); | ||
|
||
title(classifier_name); | ||
legend off, axis tight | ||
|
||
legend(labels,'Location',[0.45,0.01,0.45,0.05],'Orientation','Horizontal'); | ||
|
||
%---------------Visualizing Test Results | ||
labels = unique(data.Purchased); | ||
classifier_name = 'SVM (Testing Results)'; | ||
|
||
Age_range = min(data.Age(training(cv)))-1:0.01:max(data.Age(training(cv)))+1; | ||
Estimated_salary_range = min(data.EstimatedSalary(training(cv)))-1:0.01:max(data.EstimatedSalary(training(cv)))+1; | ||
|
||
[xx1, xx2] = meshgrid(Age_range,Estimated_salary_range); | ||
XGrid = [xx1(:) xx2(:)]; | ||
|
||
predictions_meshgrid = predict(cross_validated_model.Trained{1},XGrid); | ||
|
||
figure | ||
|
||
gscatter(xx1(:), xx2(:), predictions_meshgrid,'rgb'); | ||
|
||
hold on | ||
|
||
testing_data = data(test(cv),:); | ||
Y = ismember(testing_data.Purchased,labels{1}); | ||
|
||
scatter(testing_data.Age(Y),testing_data.EstimatedSalary(Y), 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'red'); | ||
scatter(testing_data.Age(~Y),testing_data.EstimatedSalary(~Y) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'green'); | ||
|
||
xlabel('Age'); | ||
ylabel('Estimated Salary'); | ||
|
||
title(classifier_name); | ||
legend off, axis tight | ||
|
||
legend(labels,'Location',[0.45,0.01,0.45,0.05],'Orientation','Horizontal'); | ||
|