A summary of meta learning papers based on realm. Sorted by submission date on arXiv.
- Survey
- Few-shot learning
- Reinforcement Learning
- AutoML
- Task-dependent Methods
- Data Aug & Reg
- Lifelong learning
- Domain generalization
- Neural process
- Configuration transfer (Adaptation, Hyperparameter Opt)
- Model compression
- Kernel learning
- Robustness
- Bayesian inference
- Optimization
- Theory
Meta-Learning in Neural Networks: A Survey [paper]
- Timothy Hospedales, Antreas Antoniou, Paul Micaelli, Amos Storkey
Meta-Learning[paper]
- Joaquin Vanschoren
Meta-Learning: A Survey [paper]
- Joaquin Vanschoren
Meta-learners’ learning dynamics are unlike learners’ [paper]
- Neil C. Rabinowitz
Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification [paper]
- Jiangtao Xie, Fei Long, Jiaming Lv, Qilong Wang, Peihua Li --CVPR 2022
Learning Prototype-oriented Set Representations for Meta-Learning [paper]
- Dan dan Guo, Long Tian, Minghe Zhang, Mingyuan Zhou, Hongyuan Zha --ICLR 2022
On the Role of Pre-training for Meta Few-Shot Learning [paper]
- Chia-You Chen, Hsuan-Tien Lin, Gang Niu, Masashi Sugiyama, --arXiv 2021
BOIL: Towards Representation Change for Few-shot Learning [paper]
- Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, Se-Young Yun --ICLR 2021
On Episodes, Prototypical Networks, and Few-Shot Learning [paper]
- Steinar Laenen, Luca Bertinetto --NeurIPS 2021
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels [paper]
- Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O'Boyle, Amos Storkey --NeurIPS 2020
Laplacian Regularized Few-Shot Learning [paper]
- Imtiaz Masud Ziko, Jose Dolz, Eric Granger, Ismail Ben Ayed --ICML 2020
Few-shot Sequence Learning with Transformer
- Lajanugen Logeswaran, Ann Lee, Myle Ott, Honglak Lee, Marc´Aurelio Ranzato, Arthur Szlam --NeurIPS 2020 #Meta-Learning
Prototype Rectification for Few-Shot Learning [paper]
- Jinlu Liu, Liang Song, Yongqiang Qin --ECCV 2020
When Does Self-supervision Improve Few-shot Learning? [paper]
- Jong-Chyi Su, Subhransu Maji, Bharath Hariharan --ECCV 2020
Cross Attention Network for Few-shot Classification [paper]
- Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, Xilin Chen --NeurIPS 2019
Learning to Learn via Self-Critique [paper]
- Antreas Antoniou, Amos Storkey --NeurIPS 2019
Learning from the Past: Continual Meta-Learning with Bayesian Graph Neural Networks [paper]
- Yadan Luo, Zi Huang, Zheng Zhang, Ziwei Wang, Mahsa Baktashmotlagh, Yang Yang --AAAI 2020
Few-Shot Learning with Global Class Representations [paper]
- Tiange Luo, Aoxue Li, Tao Xiang, Weiran Huang, Liwei Wang --ICCV 2019
TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning [paper]
- Sung Whan Yoon, Jun Seo, Jaekyun Moon --ICML 2019
Learning to Learn with Conditional Class Dependencies [paper]
- Xiang Jiang, Mohammad Havaei, Farshid Varno, Gabriel Chartrand, Nicolas Chapados, Stan Matwin --ICLR 2019
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal [paper]
- Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, Xiaogang Wang --CVPR 2019
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning [paper]
- Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, Joseph E. Gonzalez --CVPR 2019
Variational Prototyping-Encoder: One-Shot Learning with Prototypical Images [paper]
- Junsik Kim, Tae-Hyun Oh, Seokju Lee, Fei Pan, In So Kweon --CVPR 2019
LCC: Learning to Customize and Combine Neural Networks for Few-Shot Learning [paper]
- Yaoyao Liu, Qianru Sun, An-An Liu, Yuting Su, Bernt Schiele, Tat-Seng Chua --CVPR 2019
Meta-Learning with Differentiable Convex Optimization [paper]
- Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, Stefano Soatto --CVPR 2019
Dense Classification and Implanting for Few-Shot Learning [paper]
- Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, Andrei Bursuc --CVPR 2019
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
- Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle -- arXiv 2019
Adaptive Cross-Modal Few-Shot Learning [paper]
- Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro --arXiv 2019
Meta-Learning with Latent Embedding Optimization [paper]
- Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell -- ICLR 2019
A Closer Look at Few-shot Classification [paper]
- Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, Jia-Bin Huang -- ICLR 2019
Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning [paper]
- Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, Yi Yang -- ICLR 2019
Dynamic Few-Shot Visual Learning without Forgetting [paper]
- Spyros Gidaris, Nikos Komodakis --arXiv 2019
Meta Learning with Lantent Embedding Optimization [paper]
- Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero & Raia Hadsell --ICLR 2019
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
- Tiago Ramalho, Marta Garnelo --ICLR 2019
How To Train Your MAML [paper]
- Antreas Antoniou, Harrison Edwards, Amos Storkey -- ICLR 2019
TADAM: Task dependent adaptive metric for improved few-shot learning [paper]
- Boris N. Oreshkin, Pau Rodriguez, Alexandre Lacoste --arXiv 2019
Few-shot Learning with Meta Metric Learners
- Yu Cheng, Mo Yu, Xiaoxiao Guo, Bowen Zhou --NIPS 2017 workshop on Meta-Learning
Learning Embedding Adaptation for Few-Shot Learning [paper]
- Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, Fei Sha --arXiv 2018
Meta-Transfer Learning for Few-Shot Learning [paper]
- Qianru Sun, Yaoyao Liu, Tat-Seng Chu, Bernt Schiele -- arXiv 2018
Task-Agnostic Meta-Learning for Few-shot Learning
- Muhammad Abdullah Jamal, Guo-Jun Qi, and Mubarak Shah --arXiv 2018
Few-Shot Learning with Graph Neural Networks [paper]
- Victor Garcia, Joan Bruna -- ICLR 2018
Prototypical Networks for Few-shot Learning [paper]
- Jake Snell, Kevin Swersky, Richard S. Zemel -- NIPS 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [paper]
- Chelsea Finn, Pieter Abbeel, Sergey Levine -- ICML 2016
Image Deformation Meta-Networks for One-Shot Learning [paper]
- Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu, Martial Hebert --CVPR 2019
Balanced Meta-Softmax for Long-Tailed Visual Recognition [paper]
- Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, Hongsheng Li --NeurIPS 2020
MESA: Boost Ensemble Imbalanced Learning with MEta-SAmpler [paper]
- Zhining Liu, Pengfei Wei, Jing Jiang, Wei Cao, Jiang Bian, Yi Chang --NeurIPS 2019
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks [paper]
- Donghyun Na, Hae Beom Lee, Hayeon Lee, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang --ICLR 2020
Meta-weight-net: Learning an explicit mapping for sample weighting [paper]
- Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng --NeurIPS 2019
Learning to Reweight Examples for Robust Deep Learning [paper]
- Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun --ICML 2018
Learning to Model the Tail [paper]
- Yu-Xiong Wang, Deva Ramanan, Martial Hebert --NeurIPS 2017
MetaPix: Few-Shot Video Retargeting [paper]
- Jessica Lee, Deva Ramanan, Rohit Girdhar --ICLR 2020
Few-shot Object Detection via Feature Reweighting [paper]
- Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, Trevor Darrell --ICCV 2019
PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment [paper]
- Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, Jiashi Feng --ICCV 2019
Meta-Learning for Few-Shot NMT Adaptation [paper]
- Amr Sharaf, Hany Hassan, Hal Daumé III --arXiv 2020
Learning to Few-Shot Learn Across Diverse Natural Language Classification Tasks [paper]
- Trapit Bansal, Rishikesh Jha, Andrew McCallum --arXiv 2020
Compositional generalization through meta sequence-to-sequence learning [paper]
- Brenden M. Lake --NeurIPS 2019
Few-Shot Representation Learning for Out-Of-Vocabulary Words [paper]
- Ziniu Hu, Ting Chen, Kai-Wei Chang, Yizhou Sun --ACL 2019
Offline Meta-Reinforcement Learning with Online Self-Supervision [paper]
- Vitchyr Pong, Ashvin Nair, Laura Smith, Catherine Huang, Sergey Levine --ICML 2022
System-Agnostic Meta-Learning for MDP-based Dynamic Scheduling via Descriptive Policy [paper]
- Lee, Hyun-Suk --AISTATS 2022
Meta Learning MDPs with Linear Transition Models [paper]
- Müller, Robert ; Pacchiano, Aldo --AISTATS 2022
CoMPS: Continual Meta Policy Search [paper]
- Glen Berseth, Zhiwei Zhang, Grace Zhang, Chelsea Finn, Sergey Levine --ICLR 2022
Modeling and Optimization Trade-off in Meta-learning [paper]
- Katelyn Gao, Ozan Sener --NeurIPS 2020
Information-theoretic Task Selection for Meta-Reinforcement Learning [paper]
- Ricardo Luna Gutierrez, Matteo Leonetti --NeurIPS 2020
On the Global Optimality of Model-Agnostic Meta-Learning: Reinforcement Learning and Supervised Learning [paper]
- Lingxiao Wang, Qi Cai, Zhuoyan Yang, Zhaoran Wang --PMLR 2020
Generalized Reinforcement Meta Learning for Few-Shot Optimization [paper]
- Raviteja Anantha, Stephen Pulman, Srinivas Chappidi --ICML 2020
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning [paper]
- Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, Shimon Whiteson --ICLR 2020
Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives [paper]
- Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, Yoshua Bengio --ICLR 2020
Meta-learning curiosity algorithms [paper]
- Ferran Alet*, Martin F. Schneider*, Tomas Lozano-Perez, Leslie Pack Kaelbling --ICLR 2020
Meta-Q-Learning [paper]
- Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, Alexander J. Smola --ICLR 2020
Guided Meta-Policy Search [paper]
- Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn
Learning meta-features for AutoML [paper]
- Herilalaina Rakotoarison, Louisot Milijaona, Andry RASOANAIVO, Michele Sebag, Marc Schoenauer --ICLR 2022
Towards Fast Adaptation of Neural Architectures with Meta Learning [paper]
- Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, Shenghua Gao --ICLR 2020
Graph HyperNetworks for Neural Architecture Search [paper]
- Chris Zhang, Mengye Ren, Raquel Urtasun --ICLR 2019
Fast Task-Aware Architecture Inference
- Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gabor Bartok, Jesse Berent --arXiv 2019
Bayesian Meta-network Architecture Learning
- Albert Shaw, Bo Dai, Weiyang Liu, Le Song --arXiv 2018
Meta-Learning with Fewer Tasks through Task Interpolation [paper]
- Huaxiu Yao, Linjun Zhang, Chelsea Finn --ICLR 2022
Meta-Regularization by Enforcing Mutual-Exclusiveness [paper]
- Edwin Pan, Pankaj Rajak, Shubham Shrivastava --arXiv 2021
Task-Robust Model-Agnostic Meta-Learning [paper]
- Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --NeurIPS 2020
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation [paper]
- Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim --NeurIPS 2019
Meta-Learning with Warped Gradient Descent [paper]
- Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Hujun Yin, Raia Hadsell --arXiv 2019
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning [paper]
- Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, Joseph E. Gonzalez --CVPR 2019
TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning [paper]
- Sung Whan Yoon, Jun Seo, Jaekyun Moon --ICML 2019
Meta-Learning with Latent Embedding Optimization [paper]
- Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell -- ICLR 2019
Fast Task-Aware Architecture Inference
- Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gabor Bartok, Jesse Berent --arXiv 2019
Task2Vec: Task Embedding for Meta-Learning
- Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Stefano Soatto, Pietro Perona--arXiv 2019
TADAM: Task dependent adaptive metric for improved few-shot learning
- Boris N. Oreshkin, Pau Rodriguez, Alexandre Lacoste --arXiv 2019
MetaReg: Towards Domain Generalization using Meta-Regularization [paper]
- Yogesh Balaji, Swami Sankaranarayanan -- NIPS 2018
Statistical Model Aggregation via Parameter Matching [paper]
- Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang --NeurIPS 2019
Hierarchically Structured Meta-learning [paper]
- Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li --ICML 2019
Hierarchical Meta Learning [paper]
- Yingtian Zou, Jiashi Feng --arXiv 2019
MetAug: Contrastive Learning via Meta Feature Augmentation [paper]
- Jiangmeng Li, Wenwen Qiang, Changwen Zheng, Bing Su, Hui Xiong --ICML 2022
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting [paper]
- Hongxin Wei, Lei Feng, Rundong Wang, Bo An --arXiv 2020
Meta Dropout: Learning to Perturb Latent Features for Generalization [paper]
- Hae Beom Lee, Taewook Nam, Eunho Yang, Sung Ju Hwang --ICLR 2020
Learning to Reweight Examples for Robust Deep Learning [paper]
- Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun --ICML 2018
Optimizing Reusable Knowledge for Continual Learning via Metalearning [paper]
- Julio Hurtado, Alain Raymond-Saez, Alvaro Soto --NeurIPS 2021
Learning where to learn: Gradient sparsity in meta and continual learning [paper]
- Johannes von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo Caccia, Nicolas Zucchet, João Sacramento --NeurIPS 2021
Online-Within-Online Meta-Learning [paper]
- Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil
Reconciling meta-learning and continual learning with online mixtures of tasks [paper]
- Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, Katherine Heller --NeurIPS 2019
Meta-Learning Representations for Continual Learning [paper]
- Khurram Javed, Martha White --NeurIPS 2019
Online Meta-Learning [paper]
- Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine --ICML 2019
Hierarchically Structured Meta-learning [paper]
- Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li --ICML 2019
A Neural-Symbolic Architecture for Inverse Graphics Improved by Lifelong Meta-Learning [paper]
- Michael Kissner, Helmut Mayer --arXiv 2019
Incremental Learning-to-Learn with Statistical Guarantees [paper]
- Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil --arXiv 2018
Meta-learning curiosity algorithms [paper]
- Ferran Alet*, Martin F. Schneider*, Tomas Lozano-Perez, Leslie Pack Kaelbling --ICLR 2020
Domain Generalization via Model-Agnostic Learning of Semantic Features [paper]
- Qi Dou, Daniel C. Castro, Konstantinos Kamnitsas, Ben Glocker
Learning to Generalize: Meta-Learning for Domain Generalization [paper]
- Da Li, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales --AAAI 2018
Stochastic Deep Networks with Linear Competing Units for Model-Agnostic Meta-Learning [paper]
- Konstantinos Ι. Kalais, Sotirios Chatzis --ICML 2022
Meta-Learning with Variational Bayes [paper]
- Lucas D. Lingle --arXiv 2021
Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization [paper]
- Michael Volpp, Lukas Froehlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, Christian Daniel --ICLR 2020
Bayesian Meta Sampling for Fast Uncertainty Adaptation [paper]
- Zhenyi Wang, Yang Zhao, Ping Yu, Ruiyi Zhang, Changyou Chen --ICLR 2020
Meta-Learning Mean Functions for Gaussian Processes [paper]
- Vincent Fortuin, Heiko Strathmann, and Gunnar Rätsch --NeurIPS 2019 workshop
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks [paper]
- Donghyun Na, Hae Beom Lee, Hayeon Lee, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang --ICLR 2020
Meta-Learning without Memorization [paper]
- Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, Chelsea Finn --ICLR 2020
Meta-Amortized Variational Inference and Learning [paper]
- Mike Wu, Kristy Choi, Noah Goodman, Stefano Ermon --arXiv 2019
Amortized Bayesian Meta-Learning [paper]
- Sachin Ravi, Alex Beatson --ICLR 2019
Neural Processes [paper]
- Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh
Meta-Learning Probabilistic Inference For Prediction [paper]
- Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, Richard E. Turner --ICLR 2019
Meta-Learning Priors for Efficient Online Bayesian Regression [paper]
- James Harrison, Apoorva Sharma, Marco Pavone --WAFR 2018
Probabilistic Model-Agnostic Meta-Learning [paper]
- Chelsea Finn, Kelvin Xu, Sergey Levine --arXiv 2018
Few-shot Autoregressive Density Estimation: Towards Learning to Learn Distributions [paper]
- Scott Reed, Yutian Chen, Thomas Paine, Aäron van den Oord, S. M. Ali Eslami, Danilo Rezende, Oriol Vinyals, Nando de Freitas --ICLR 2018
Bayesian Model-Agnostic Meta-Learning [paper]
- Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn -- NIPS 2018
Meta-learning by adjusting priors based on extended PAC-Bayes theory [paper]
- Ron Amit , Ron Meir --ICML 2018
Neural Variational Dropout Processes [paper]
- Insu Jeon, Youngjin Park, Gunhee Kim --ICLR 2022
Neural ODE Processes [paper]
- Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, Pietro Liò --ICLR 2021
Convolutional Conditional Neural Processes [paper]
- Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, Richard E. Turner --ICLR 2020
Bootstrapping Neural Processes [paper]
- Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, Yee Whye Teh --NeurIPS 2020
MetaFun: Meta-Learning with Iterative Functional Updates [paper]
- Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam R. Kosiorek, Yee Whye Teh --ICML 2020
Sequential Neural Processes [paper]
- Gautam Singh, Jaesik Yoon, Youngsung Son, Sungjin Ahn --NeurIPS 2019
Neural Processes [paper]
- Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh --arXiv 2018
Conditional Neural Processes [paper]
- Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami --ICML 2018
Online Hyperparameter Meta-Learning with Hypergradient Distillation [paper]
- Hae Beom Lee, Hayeon Lee, JaeWoong Shin, Eunho Yang, Timothy Hospedales, Sung Ju Hwang --ICLR 2022
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels [paper]
- Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O'Boyle, Amos Storkey --NeurIPS 2020
Meta-Learning for Few-Shot NMT Adaptation [paper]
- Amr Sharaf, Hany Hassan, Hal Daumé III --arXiv 2020
Fast Context Adaptation via Meta-Learning [paper]
- Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson --ICML 2019
Zero-Shot Knowledge Distillation in Deep Networks [paper]
- Gaurav Kumar Nayak *, Konda Reddy Mopuri, Vaisakh Shaj, R. Venkatesh Babu, Anirban Chakraborty --ICML 2019
Toward Multimodal Model-Agnostic Meta-Learning [paper]
- Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim --arXiv 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [paper]
- Chelsea Finn, Pieter Abbeel, Sergey Levine -- ICML 2016
Unsupervised Learning via Meta-Learning [paper]
- Kyle Hsu, Sergey Levine, Chelsea Finn -- ICLR 2019
Meta-Learning Update Rules for Unsupervised Representation Learning [paper]
- Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein --ICLR 2019
Meta-Learning for Semi-Supervised Few-Shot Classification [paper]
- Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel --ICLR 2018
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace [paper]
- Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, Sergey Levine --ICML 2018
MAML is a Noisy Contrastive Learner in Classification [paper]
- Chia Hsiang Kao, Wei-Chen Chiu, Pin-Yu Chen --ICLR 2022
Contrastive Learning is Just Meta-Learning [paper]
- Renkun Ni, Manli Shu, Hossein Souri, Micah Goldblum, Tom Goldstein --ICLR 2022
Transferring Knowledge across Learning Processes [paper]
- Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou --ICLR 2019
Meta-Curvature [paper]
- Eunbyung Park, Junier B. Oliva --NeurIPS 2019
LCC: Learning to Customize and Combine Neural Networks for Few-Shot Learning [paper]
- Yaoyao Liu, Qianru Sun, An-An Liu, Yuting Su, Bernt Schiele, Tat-Seng Chua --CVPR 2019
Gradient-based Hyperparameter Optimization through Reversible Learning [paper]
- Dougal Maclaurin, David Duvenaud, Ryan P. Adams --ICML 2016
N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning
- Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, Kris M. Kitani --ICLR 2018
Deep Kernel Transfer in Gaussian Processes for Few-shot Learning [paper]
- Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey --arXiv 2020
Deep Mean Functions for Meta-Learning in Gaussian Processes [paper]
- Vincent Fortuin, Gunnar Rätsch --arXiv 2019
Kernel Learning and Meta Kernels for Transfer Learning [paper]
- Ulrich Ruckert
A Closer Look at the Training Strategy for Modern Meta-Learning [paper]
- JIAXIN CHEN, Xiao-Ming Wu, Yanke Li, Qimai LI, Li-Ming Zhan, Fu-lai Chung --NeurIPS 2020
Task-Robust Model-Agnostic Meta-Learning [paper]
- Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --NeurIPS 2020
FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness [paper]
- Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum --ICML 2000
Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning [paper]
- Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, Tianyi Chen --ICML 2022
Bootstrapped Meta-Learning [paper]
- Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David Silver, Satinder Singh --ICLR 2022
Learning where to learn: Gradient sparsity in meta and continual learning [paper]
- Johannes von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo Caccia, Nicolas Zucchet, João Sacramento --NeurIPS 2021
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML [paper]
- Aniruddh Raghu, Maithra Raghu, Samy Bengio, Oriol Vinyals --ICLR 2020
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients [paper]
- Shell Xu Hu, Pablo G. Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D. Lawrence, Andreas Damianou --ICLR 2020
Transferring Knowledge across Learning Processes [paper]
- Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou --ICLR 2019
MetaInit: Initializing learning by learning to initialize [paper]
- Yann N. Dauphin, Samuel Schoenholz --NeurIPS 2019
Meta-Learning with Implicit Gradients [paper]
- Aravind Rajeswaran*, Chelsea Finn*, Sham Kakade, Sergey Levine --NeurIPS 2019
Model-Agnostic Meta-Learning using Runge-Kutta Methods [paper]
- Daniel Jiwoong Im, Yibo Jiang, Nakul Verma --arXiv
Learning to Optimize in Swarms [paper]
- Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen --arXiv 2019
Meta-Learning with Warped Gradient Descent [paper]
- Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Hujun Yin, Raia Hadsell --ICLR 2020
Learning to Generalize to Unseen Tasks with Bilevel Optimization [paper]
- Hayeon Lee, Donghyun Na, Hae Beom Lee, Sung Ju Hwang --arXiv 2019
Learning to Optimize [paper]
- Ke Li Jitendra Malik --ICLR 2017
Gradient-based Hyperparameter Optimization through Reversible Learning [paper]
- Dougal Maclaurin, David Duvenaud, Ryan P. Adams --ICML 2016
Continuous-Time Meta-Learning with Forward Mode Differentiation [paper]
- Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon --ICLR 2022
Meta-learning using privileged information for dynamics [paper]
- Ben Day, Alexander Norcliffe, Jacob Moss, Pietro Liò --ICLR 2020 #Learning to Learn and SimDL
Near-Optimal Task Selection with Mutual Information for Meta-Learning [paper]
- Chen, Yizhou; Zhang, Shizhuo; Low, Bryan Kian Hsiang --AISTATS 2022
Learning Tensor Representations for Meta-Learning [paper]
- Samuel Deng, Yilin Guo, Daniel Hsu, Debmalya Mandal --AISTATS 2022
Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably? [paper]
- Lisha Chen, Tianyi Chen --AISTATS 2022
Unraveling Model-Agnostic Meta-Learning via The Adaptation Learning Rate [paper]
- Yingtian Zou, Fusheng Liu, Qianxiao Li --ICLR 2022
Task Relatedness-Based Generalization Bounds for Meta Learning [paper]
- Jiechao Guan, Zhiwu Lu --ICLR 2022
How Tight Can PAC-Bayes be in the Small Data Regime? [paper]
- Andrew Y. K. Foong, Wessel P. Bruinsma, David R. Burt, Richard E. Turner --NeurIPS 2021
A Representation Learning Perspective on the Importance of Train-Validation Splitting in Meta-Learning [paper]
- Nikunj Saunshi, Arushi Gupta, and Wei Hu --ICML 2021
Bilevel Optimization: Convergence Analysis and Enhanced Design [paper]
- Kaiyi Ji, Junjie Yang, Yingbin Liang --ICML 2021
How Important is the Train-Validation Split in Meta-Learning? [paper]
- Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason D. Lee, Sham Kakade, Huan Wang, Caiming Xiong --ICML 2021
Information-Theoretic Generalization Bounds for Meta-Learning and Applications [paper]
- Sharu Theresa Jose, Osvaldo Simeone --arXiv 2021
Modeling and Optimization Trade-off in Meta-learning [paper]
- Katelyn Gao, Ozan Sener --NeurIPS 2020
A Closer Look at the Training Strategy for Modern Meta-Learning [paper]
- JIAXIN CHEN, Xiao-Ming Wu, Yanke Li, Qimai LI, Li-Ming Zhan, Fu-lai Chung --NeurIPS 2020
Why Does MAML Outperform ERM? An Optimization Perspective [paper]
- Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --arXiv 2020
Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization [paper]
- Sharu Theresa Jose, Osvaldo Simeone, Giuseppe Durisi --arXiv 2020
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning [paper]
- Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto --NeurIPS 2020
Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters [paper]
- Kaiyi Ji, Jason D. Lee, Yingbin Liang, H. Vincent Poor --NeurIPS 2020
Meta-learning for mixed linear regression [paper]
- Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, Sewoong Oh --ICML 2020
Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time
- Ferran Alet, Kenji Kawaguchi, Maria Bauza, Nurallah Giray Kuru, Tomás Lozano-Pérez, Leslie Pack Kaelbling --NeurIPS 2020 #Meta-Learning
A Theoretical Analysis of the Number of Shots in Few-Shot Learning [paper]
- Tianshi Cao, Marc T Law, Sanja Fidler --ICLR 2020
Efficient Meta Learning via Minibatch Proximal Update [paper]
- Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, Jiashi Feng --NeurIPS 2019
On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms [paper]
- Alireza Fallah, Aryan Mokhtari, Asuman Ozdaglar --arXiv 2019
Meta-learners' learning dynamics are unlike learners' [paper]
- Neil C. Rabinowitz --arXiv 2019
Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior [paper]
- Zi Wang, Beomjoon Kim, Leslie Pack Kaelbling --NeurIPS 2018
Incremental Learning-to-Learn with Statistical Guarantees [paper]
- Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil --UAI 2018
Meta-learning by adjusting priors based on extended PAC-Bayes theory [paper]
- Ron Amit , Ron Meir --ICML 2018
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm [paper]
- Chelsea Finn, Sergey Levine --ICLR 2018
On the Convergence of Model-Agnostic Meta-Learning [paper]
- Noah Golmant
Fast Rates by Transferring from Auxiliary Hypotheses [paper]
- Ilja Kuzborskij, Francesco Orabona --arXiv 2014
Algorithmic Stability and Meta-Learning [paper]
- Andreas Maurer --JMLR 2005
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees [paper]
- Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, Andreas Krause --ICML 2021
Meta-learning with Stochastic Linear Bandits [paper]
- Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil --arXiv 2020
Bayesian Online Meta-Learning with Laplace Approximation [paper]
- Pau Ching Yap, Hippolyt Ritter, David Barber --arXiv 2020
Online Meta-Learning on Non-convex Setting [paper]
- Zhenxun Zhuang, Yunlong Wang, Kezi Yu, Songtao Lu --arXiv 2019
Adaptive Gradient-Based Meta-Learning Methods [paper]
- Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar --NeurIPS 2019
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization [paper]
- Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, Massimiliano Pontil --NeurIPS 2019
Provable Guarantees for Gradient-Based Meta-Learning
- Mikhail Khodak Maria-Florina Balcan Ameet Talwalkar --arXiv 2019