Skip to content

noahmbright/pittmath3370

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pitt MATH 3370 Mathematical Neuroscience Models

An collection of models for use in Pitt Math 3370 Mathematical Neuroscience. 🧠

Installation

How do you install this package?

Dependencies

Numpy, Scipy, maybe a C compiler if I get around to the stochastic coupling

Supported models

Hodgkin-Huxley

4D model in $V, m, h, n$. Default initial conditions are $(V, m, h, n) = (-65, 0.05, 0.6, 0.317)$.

The dynamics of the model are given by

$$ c\frac{dV}{dt} = I_0 + I_{\text{inj}} - I_{\text{Na}} - I_{\text{K}} - g_{\text{Leak}}(V - V_{\text{Leak}}), $$

$$ \frac{dm}{dt} = \alpha_{m}(V)(1 - m) - \beta_m(V)m, $$

$$ \frac{dh}{dt} = \alpha_{h}(V)(1 - h) - \beta_h(V)h, $$

$$ \frac{dn}{dt} = \alpha_{n}(V)(1 - n) - \beta_n(V)n, $$

with the $\alpha$ and $\beta$ given by

$$ \alpha_m(V) = \phi \times .1 \times \frac{(V + 40)}{1 - \exp\left[-(V + 40)/10\right]} \qquad \beta_m(V) = \phi\times 4 \exp\left[-(V + 65)/18\right] $$

$$ \alpha_h(V) = \phi \times 0.07\exp\left[-(V + 65)/20\right] \qquad \beta_h(V) = \phi\frac 1 {1 + \exp\left[-(V + 35)/10\right]} $$

$$ \alpha_n(V) = \phi\times 0.01 \frac{V + 55}{\exp\left[-(V + 55)/10\right]} \qquad \beta_n(V) = \phi\times0.125\exp\left[-(V + 65)/80\right]. $$

Finally, the currents are given by $$ I_{\text{Na}} = g_{\text{Na}}h(V - V_{\text{Na}}) m^3, \quad I_{\text{K}} = g_{\text{K}} (V - V_{\text{K}}) n^4. $$

These are default values for parameterizing the $\alpha$ and $\beta$.

TBD: should these be expressed in a more generic way?

The reversal potentials and conductances default to

$$ V_{\text{Na}} = 50 \quad V_{\text{K}} = -77 \quad V_{\text{Leak}} = -54.387 $$

$$ g_{\text{Na}} = 120 \quad g_{\text{K}} = 36 \quad g_{\text{Leak}} = 0.3. $$

$c$ and $\phi$ default to 1.

Rinzel Reduction

The Rinzel reduction of the HH model inherits the $\alpha$ and $\beta$ functions, as well as the reversal potentials, channel conductances, $c$ and $\phi$. The dynamics for $V$ and $n$ are also inherited, but $h$ and $m$ are modeled:

$$ \frac{dm}{dt} = \frac{\alpha_{m}(V)}{\alpha_m(V) + \beta_m(V)}, $$

$$ h = h_0 - n. $$

$h_0$ is a constant that defaults to 0.8.

Kepler Reduction

Where did I get these equations from? Canvas?

Integrate-and-fire

Quadratic

Destexhe-Pare

Destexhe-Pare is a 5D model in $V, m, h, n$ and $m_{\text{K}}$, with default initial conditions

$$ (V, m, h, n, m_{\text{K}}) = (-73.87,0,1,0.002,0.0075). $$

The dynamics of $m, n,$ and $h$ are the same as in HH, with the dynamics of $V$ and $m_{\text{K}}$ given by:

$$ c\frac{dV}{dt} = I_0 + I_{\text{Inj}} - g_{\text{L}}(V - E_{\text{L}}) - I_{\text{Kdr}}(V,n) - I_{\text{Na}}(V, m, h) - I_{\text{Km}} $$

$$ \frac{dm_{\text{K}}}{dt} = \alpha_{m_{\text{K}}}(V)(1 - m_{\text{K}}) - \beta_{m_{\text{K}}}(V)m_{\text{K}}. $$

The sodium current is the same as HH, and the $I_{\text{Kdr}}$ of this model is the $I_{\text{K}}$ of HH. The new current is

$$ I_{\text{Km}}(V,m)= g_{\text{Km}}m(V-e_{\text{K}}). $$

Finally, the $\alpha$ and $\beta$ take on different forms:

$$ \alpha_m(V)=-.32\frac{V-V_t-13}{\exp(-(V-V_t-13)/4)-1)} \quad \beta_m(V)=.28\frac{V-V_t-40}{\exp((V-V_t-40)/5)-1)} $$

$$ \alpha_h(V)=.128\exp(-(V-V_t-V_s-17)/18) \quad \beta_h(V)=\frac 4 {1+\exp(-(V-V_t-V_s-40)/5)} $$

$$ \alpha_n(V)=-.032\frac{V-V_t-15}{\exp(-(V-V_t-15)/5)-1} \quad \beta_n(V)=.5\frac 1 {\exp(-(V-V_t-10)/40)} $$

$$ \alpha_{text{Km}}(V)= .0001\frac{V+30}{1-\exp(-(V+30)/9)} \quad \beta_{\text{Km}}(V)=-.0001\frac{V+30}{1-\exp((V+30)/9)} $$

Izhikevic

The Izhikevic model is 2D in $u$ and $V$, with dynamics

$$ \dot V = I_0 + I_{\text{inj}} + V^2 - u, $$

$$ \dot u = a(bV - u). $$

On $V$ crossing $V_{\text{threshold}}$ from below, the resetting

$$ V\to c, u \to u + d $$

takes place. $V_{\text{threshold}}$, $a, b, c$, and $d$ are all adjustable member variables of the model.

TODO: Need reasonable defaults.

Morris-Lecar

How to couple models

How do you couple models?

Other functionality

Gillespie Simulations

Currently supports

About

Common neuronal models for MATH3370

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages