Skip to content

Practice Exercise from Data Analysis course of Udacity DAND

Notifications You must be signed in to change notification settings

nirupamaprv/Data-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

Practice Exercise from Data Analysis course of Udacity DAND

  • .ipynb file contains code with Markdown cells from Jupyter Notebook.
  • Exercises solved by self to answer questions for assignment.
  • .html file is .pynb converted to web version for easy viewing
  • .csv files contain data on which data analysis was conducted

Datasets and Project Summary

Chicago temperature set

  • Cleaning.ipynb - Data cleaning practice
  • Histogram-Practice.ipynb - Practicing creating plots
  • plots-pandas.ipynb - computing values for plots

Wine Dataset

  • appending.ipynb - Appending data from different datasets
  • appending_rename.ipynb - Appending, renaming and saving data from different datasets
  • assessing_quiz.ipynb - answering Quiz using pandas
  • conclusions_groupby.ipynb - using groupby function to analyze quality, ratings and other Questions.
  • conclusions_query.ipynb - drawing conclusions to Qs on ratings
  • eda_visuals.ipynb - Addressing Qs on wine dataset using different plots
  • eda_visuals_practise_functions.ipynb - Addressing additional Qs using different plots; Here, varying colors are used to differentiate groups
  • plotting_type_quality.ipynb - Creating plots with matplotlib for ratings
  • wine_visualizations.ipynb - Use Matplotlib to create bar charts that visualize the conclusions made with groupby and queries

Cancer Dataset

  • assessing.ipynb - inspecting datasets, data types, selecting different ranges
  • cleaning_practice.ipynb - practicing data wrangling

Auto Dataset for 2008 and 2018 models

  • assessing_case2.ipynb - answering Quiz using pandas
  • cleaning_column_labels.ipynb - data wrangling
  • drawing_conclusions_Fuel.ipynb - Making inferences and comparisons on fuel efficiency, improvements, classes, etc. and visualizing using histograms and pie charts
  • exploring_visuals.ipynb - Making inferences and comparisons using visualizations
  • fix_datatypes_air_pollution.ipynb - Data Wrangling fix_datatypes_cyl.ipynb - Datatypes transformation
  • query_filter.ipynb - Data Wrangling

Other Datasets

  • matplotlib_example.ipynb - Practicing bar charts
  • conclusions_quiz.ipynb - Store Sales Dataset - Analyzing sales figures and periods to determine performance and revenue
  • reading_csv.ipynb - Student Scores Data- Reading, writing and inspecting values
  • visuals_quiz.ipynb - Powerplant Data - creating plots using matplotlib and answering Quiz questions

Releases

No releases published

Packages

No packages published