-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
526 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# CPU vs. GPU benchmark | ||
|
||
|
||
<!-- `.md` and `.py` files are generated from the `.qmd` file. Please edit that file. --> | ||
|
||
!!! tip | ||
|
||
To run the code from this article as a Python script: | ||
|
||
```bash | ||
python3 examples/benchmark.py | ||
``` | ||
|
||
Let’s compare the topic model training speed on CPU vs. GPU. We will | ||
compare the training time under combinations of: | ||
|
||
- Number of documents (`n`). | ||
- Vocabulary size (`m`). | ||
- Number of topics (`k`). | ||
|
||
Experiment environment: | ||
|
||
- 1x NVIDIA GeForce RTX 4090 | ||
- 1x AMD Ryzen 9 7950X3D | ||
|
||
## Conclusions | ||
|
||
- Training time grows linearly as number of documents (`n`) grows, on | ||
both CPU and GPU. | ||
- Similarly, training time grows as the number of topics (`k`) grows. | ||
- With `n` and `k` fixed and vocabulary size (`m`) grows, CPU time will | ||
grow linearly, while GPU time stays constant. For `m` larger than a | ||
certain threshold (1,000 to 5,000), training on GPU will be faster | ||
than CPU. | ||
|
||
## Import | ||
|
||
``` python | ||
import time | ||
import torch | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
from tinytopics.fit import fit_model | ||
from tinytopics.utils import generate_synthetic_data, set_random_seed | ||
``` | ||
|
||
## Basic setup | ||
|
||
Set seed for reproducibility | ||
|
||
``` python | ||
set_random_seed(42) | ||
``` | ||
|
||
Define parameter grids | ||
|
||
``` python | ||
n_values = [1000, 5000] # Number of documents | ||
m_values = [500, 1000, 5000, 10000] # Vocabulary size | ||
k_values = [10, 50, 100] # Number of topics | ||
learning_rate = 0.01 | ||
avg_doc_length = 256 * 256 | ||
``` | ||
|
||
Create a DataFrame to store benchmark results | ||
|
||
``` python | ||
benchmark_results = pd.DataFrame() | ||
|
||
def benchmark(X, k, device): | ||
start_time = time.time() | ||
model, losses = fit_model(X, k, learning_rate=learning_rate, device=device) | ||
elapsed_time = time.time() - start_time | ||
|
||
return elapsed_time | ||
``` | ||
|
||
## Run experiment | ||
|
||
Run the benchmarks | ||
|
||
``` python | ||
for n in n_values: | ||
for m in m_values: | ||
for k in k_values: | ||
print(f"Benchmarking for n={n}, m={m}, k={k}...") | ||
|
||
X, true_L, true_F = generate_synthetic_data(n, m, k, avg_doc_length=avg_doc_length) | ||
|
||
# Benchmark on CPU | ||
cpu_time = benchmark(X, k, torch.device("cpu")) | ||
cpu_result = pd.DataFrame([{"n": n, "m": m, "k": k, "device": "CPU", "time": cpu_time}]) | ||
|
||
if not cpu_result.isna().all().any(): | ||
benchmark_results = pd.concat([benchmark_results, cpu_result], ignore_index=True) | ||
|
||
# Benchmark on GPU if available | ||
if torch.cuda.is_available(): | ||
gpu_time = benchmark(X, k, torch.device("cuda")) | ||
gpu_result = pd.DataFrame([{"n": n, "m": m, "k": k, "device": "GPU", "time": gpu_time}]) | ||
|
||
if not gpu_result.isna().all().any(): | ||
benchmark_results = pd.concat([benchmark_results, gpu_result], ignore_index=True) | ||
``` | ||
|
||
Save results to a CSV file | ||
|
||
``` python | ||
benchmark_results.to_csv("benchmark-results.csv", index=False) | ||
``` | ||
|
||
## Results summary | ||
|
||
Plot m vs. time, conditioned on n, for each k. | ||
|
||
``` python | ||
for k in k_values: | ||
plt.figure(figsize=(12, 8), dpi=300) | ||
|
||
for n in n_values: | ||
subset = benchmark_results[(benchmark_results["n"] == n) & (benchmark_results["k"] == k)] | ||
|
||
plt.plot(subset[subset["device"] == "CPU"]["m"], subset[subset["device"] == "CPU"]["time"], | ||
label=f"CPU (n={n})", linestyle="--", marker="o") | ||
if torch.cuda.is_available(): | ||
plt.plot(subset[subset["device"] == "GPU"]["m"], subset[subset["device"] == "GPU"]["time"], | ||
label=f"GPU (n={n})", linestyle="-", marker="x") | ||
|
||
plt.xlabel("Vocabulary Size (m)") | ||
plt.ylabel("Training Time (seconds)") | ||
plt.title(f"Training Time vs. Vocabulary Size (k={k})") | ||
plt.legend() | ||
plt.grid(True) | ||
plt.savefig(f"training-time-k-{k}.png", dpi=300) | ||
plt.close() | ||
``` | ||
|
||
![](images/training-time-k-10.png) | ||
|
||
![](images/training-time-k-50.png) | ||
|
||
![](images/training-time-k-100.png) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
<!-- `.md` and `.py` files are generated from the `.qmd` file. Please edit that file. --> | ||
|
||
--- | ||
title: "CPU vs. GPU benchmark" | ||
format: gfm | ||
eval: false | ||
--- | ||
|
||
!!! tip | ||
|
||
To run the code from this article as a Python script: | ||
|
||
```bash | ||
python3 examples/benchmark.py | ||
``` | ||
|
||
Let's compare the topic model training speed on CPU vs. GPU. | ||
We will compare the training time under combinations of: | ||
|
||
- Number of documents (`n`). | ||
- Vocabulary size (`m`). | ||
- Number of topics (`k`). | ||
|
||
Experiment environment: | ||
|
||
- 1x NVIDIA GeForce RTX 4090 | ||
- 1x AMD Ryzen 9 7950X3D | ||
|
||
## Conclusions | ||
|
||
- Training time grows linearly as number of documents (`n`) grows, on both CPU and GPU. | ||
- Similarly, training time grows as the number of topics (`k`) grows. | ||
- With `n` and `k` fixed and vocabulary size (`m`) grows, | ||
CPU time will grow linearly, while GPU time stays constant. | ||
For `m` larger than a certain threshold (1,000 to 5,000), | ||
training on GPU will be faster than CPU. | ||
|
||
## Import | ||
|
||
```{python} | ||
import time | ||
import torch | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
from tinytopics.fit import fit_model | ||
from tinytopics.utils import generate_synthetic_data, set_random_seed | ||
``` | ||
|
||
## Basic setup | ||
|
||
Set seed for reproducibility | ||
|
||
```{python} | ||
set_random_seed(42) | ||
``` | ||
|
||
Define parameter grids | ||
|
||
```{python} | ||
n_values = [1000, 5000] # Number of documents | ||
m_values = [500, 1000, 5000, 10000] # Vocabulary size | ||
k_values = [10, 50, 100] # Number of topics | ||
learning_rate = 0.01 | ||
avg_doc_length = 256 * 256 | ||
``` | ||
|
||
Create a DataFrame to store benchmark results | ||
|
||
```{python} | ||
benchmark_results = pd.DataFrame() | ||
def benchmark(X, k, device): | ||
start_time = time.time() | ||
model, losses = fit_model(X, k, learning_rate=learning_rate, device=device) | ||
elapsed_time = time.time() - start_time | ||
return elapsed_time | ||
``` | ||
|
||
## Run experiment | ||
|
||
Run the benchmarks | ||
|
||
```{python} | ||
for n in n_values: | ||
for m in m_values: | ||
for k in k_values: | ||
print(f"Benchmarking for n={n}, m={m}, k={k}...") | ||
X, true_L, true_F = generate_synthetic_data(n, m, k, avg_doc_length=avg_doc_length) | ||
# Benchmark on CPU | ||
cpu_time = benchmark(X, k, torch.device("cpu")) | ||
cpu_result = pd.DataFrame([{"n": n, "m": m, "k": k, "device": "CPU", "time": cpu_time}]) | ||
if not cpu_result.isna().all().any(): | ||
benchmark_results = pd.concat([benchmark_results, cpu_result], ignore_index=True) | ||
# Benchmark on GPU if available | ||
if torch.cuda.is_available(): | ||
gpu_time = benchmark(X, k, torch.device("cuda")) | ||
gpu_result = pd.DataFrame([{"n": n, "m": m, "k": k, "device": "GPU", "time": gpu_time}]) | ||
if not gpu_result.isna().all().any(): | ||
benchmark_results = pd.concat([benchmark_results, gpu_result], ignore_index=True) | ||
``` | ||
|
||
Save results to a CSV file | ||
|
||
```{python} | ||
benchmark_results.to_csv("benchmark-results.csv", index=False) | ||
``` | ||
|
||
## Results summary | ||
|
||
Plot m vs. time, conditioned on n, for each k. | ||
|
||
```{python} | ||
for k in k_values: | ||
plt.figure(figsize=(12, 8), dpi=300) | ||
for n in n_values: | ||
subset = benchmark_results[(benchmark_results["n"] == n) & (benchmark_results["k"] == k)] | ||
plt.plot(subset[subset["device"] == "CPU"]["m"], subset[subset["device"] == "CPU"]["time"], | ||
label=f"CPU (n={n})", linestyle="--", marker="o") | ||
if torch.cuda.is_available(): | ||
plt.plot(subset[subset["device"] == "GPU"]["m"], subset[subset["device"] == "GPU"]["time"], | ||
label=f"GPU (n={n})", linestyle="-", marker="x") | ||
plt.xlabel("Vocabulary Size (m)") | ||
plt.ylabel("Training Time (seconds)") | ||
plt.title(f"Training Time vs. Vocabulary Size (k={k})") | ||
plt.legend() | ||
plt.grid(True) | ||
plt.savefig(f"training-time-k-{k}.png", dpi=300) | ||
plt.close() | ||
``` | ||
|
||
![](images/training-time-k-10.png) | ||
|
||
![](images/training-time-k-50.png) | ||
|
||
![](images/training-time-k-100.png) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
n,m,k,device,time | ||
1000,500,10,CPU,1.7643582820892334 | ||
1000,500,10,GPU,2.345470905303955 | ||
1000,500,50,CPU,1.6843383312225342 | ||
1000,500,50,GPU,2.1544528007507324 | ||
1000,500,100,CPU,1.8515551090240479 | ||
1000,500,100,GPU,2.2886829376220703 | ||
1000,1000,10,CPU,1.544670820236206 | ||
1000,1000,10,GPU,2.150327444076538 | ||
1000,1000,50,CPU,1.9352936744689941 | ||
1000,1000,50,GPU,2.2696752548217773 | ||
1000,1000,100,CPU,2.1634879112243652 | ||
1000,1000,100,GPU,2.360135078430176 | ||
1000,5000,10,CPU,2.4651286602020264 | ||
1000,5000,10,GPU,2.3126049041748047 | ||
1000,5000,50,CPU,3.4205424785614014 | ||
1000,5000,50,GPU,2.370253801345825 | ||
1000,5000,100,CPU,4.700299978256226 | ||
1000,5000,100,GPU,2.3339216709136963 | ||
1000,10000,10,CPU,3.221623659133911 | ||
1000,10000,10,GPU,2.3434886932373047 | ||
1000,10000,50,CPU,5.336186408996582 | ||
1000,10000,50,GPU,2.291794776916504 | ||
1000,10000,100,CPU,9.922599077224731 | ||
1000,10000,100,GPU,2.2474324703216553 | ||
5000,500,10,CPU,7.57342004776001 | ||
5000,500,10,GPU,11.241826295852661 | ||
5000,500,50,CPU,9.065560579299927 | ||
5000,500,50,GPU,11.648921012878418 | ||
5000,500,100,CPU,10.003302335739136 | ||
5000,500,100,GPU,11.201244592666626 | ||
5000,1000,10,CPU,8.860025644302368 | ||
5000,1000,10,GPU,11.118930339813232 | ||
5000,1000,50,CPU,10.536109924316406 | ||
5000,1000,50,GPU,11.578013181686401 | ||
5000,1000,100,CPU,11.709163427352905 | ||
5000,1000,100,GPU,11.759145259857178 | ||
5000,5000,10,CPU,13.064855575561523 | ||
5000,5000,10,GPU,11.459581851959229 | ||
5000,5000,50,CPU,18.731441020965576 | ||
5000,5000,50,GPU,11.557992696762085 | ||
5000,5000,100,CPU,26.08416771888733 | ||
5000,5000,100,GPU,11.206321716308594 | ||
5000,10000,10,CPU,17.270413398742676 | ||
5000,10000,10,GPU,10.897673845291138 | ||
5000,10000,50,CPU,27.66176724433899 | ||
5000,10000,50,GPU,11.078546524047852 | ||
5000,10000,100,CPU,53.33867883682251 | ||
5000,10000,100,GPU,10.679619550704956 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.