Skip to content

n33lkanth/Relative_Attributing_Propagation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

Interpreting Deep Neural Networks - Relative Attributing Propagation

Relative attributing propagation (RAP) decomposes the output predictions of DNNs with a new perspective of separating the relevant (positive) and irrelevant (negative) attributions according to the relative influence between the layers. Detail description of this method is provided in our paper https://arxiv.org/pdf/1904.00605.pdf.

This paper has been accepted in AAAI 2020.

This code provides a implementation of RAP and LRP for Imagenet classification. For implementing other explaining methods in the paper, we followed the tutorial of http://heatmapping.org and https://github.com/albermax/innvestigate.

Alt text

Requirements

pytorch >= 1.2.0
python >= 3.6
matplotlib >= 1.3.1

Run

python main.py --method RAP --arc vgg
python main.py --method RAP --arc resnet

Paper Citation

When using this code, please cite our paper.

@misc{nam2019relative,
title={Relative Attributing Propagation: Interpreting the Comparative Contributions of Individual Units in Deep Neural Networks},
author={Woo-Jeoung Nam and Shir Gur and Jaesik Choi and Lior Wolf and Seong-Whan Lee},
year={2019},
eprint={1904.00605},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Acknowledgement

This work was supported by Institute for Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT)
(No.2017-0-01779, A machine learning and statistical inference framework for explainable artificial intelligence & No.2019-0-01371,
Development of brain-inspired AI with human-like intelligence) and the European Research Council (ERC) under the European Unions Horizon 2020 research
and innovation  programme (grant ERC CoG 725974).

About

Interpreting DNNs, Relative attributing propagation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%