Skip to content
/ EARS Public
forked from UM-LPM/EARS

EARS is a free and open-source Java-based framework for ranking, developing, and experimenting with single- and multi-objective evolutionary algorithms

License

Notifications You must be signed in to change notification settings

mori170/EARS

 
 

Repository files navigation

EARS - Evolutionary Algorithm Rating System

EARS is a free and open-source Java-based framework for ranking, developing and experimenting with single- and multi-objective evolutionary algorithms. The framework can be used for any optimization algorithm and is not limited just to evolutionary algorithms. EARS enables an easy and reliable way to rate and rank optimization algorithms. In the framework, a large set of implemented optimization algorithms and test problems are already provided.

EARS used in an online competition

Included features

  • Multi-objective evolutionary algorithms (NSGA-II, NSGA-III, GDE3, PAES, PESA2, SPEA2, IBEA, OMOPSO, MOEA/D).
  • Single-objective evolutionary algorithms (ABC, CRO, DE, FWA, GOA, GWO, ICA, JADE, PSO, TLBO).
  • A wide variety of quality indicators (CS, EPS, IGD, IGD+, GD, MS, HV, R1, R2, R3, SPREAD, ER).
  • Benchmarks (CEC2005, CEC2009, CEC2010, CEC2011, CEC2014, CEC2015, ZDT, DTLZ, WFG).
  • Many common test functions (Ackley, Booth, Griewank, Rastrigin, Schaffer, Schwefel, Sphere ...).
  • Experiments, examples and prepared benchmarks.

How to use

Intellij

First Download EARS project

  • Go to: File - > New -> Project from Version Control -> Git
  • Set URL to https://github.com/UM-LPM/EARS.git
  • Select the directory where you want to save the project (example: "path to my projects/EARS")
  • Import Gradle project

Second create new project and set EARS Project dependency

Gradle

In file settings.gradle add:

include ':EARS'
project(':EARS').projectDir = new File('path to EARS') //example ../EARS

In file build.gradle add:

dependencies {
    compile project(':EARS')
}

Tips

  • If you have a special representation for your solution create your own by extending the DoubleSolution class in EARS: class MySolution extends DoubleSolution.
  • Code examples can be found in the package org.um.feri.ears.examples.
  • All information of the given problem (dimensions, constraints, bounds, etc...) can be obtained from the Task object: public Individual run(Task task).
  • Before every evaluation check if the stopping criterion is reached by calling taskProblem.isStopCriterion(). If evaluate is called after the stopping criterion is reached, a StopCriterionException will be thrown.

Examples

Implementing a custom algorithm by extending the Algorithm class:

import org.um.feri.ears.algorithms.AlgorithmInfo;
import org.um.feri.ears.algorithms.Author;
import org.um.feri.ears.algorithms.Algorithm;
import org.um.feri.ears.problems.DoubleSolution;
import org.um.feri.ears.problems.StopCriterionException;
import org.um.feri.ears.problems.Task;

public class RandomWalkAlgorithm extends Algorithm { // needs to extend Algorithm
    private DoubleSolution best; // used to save global best solution

    public RandomWalkAlgorithm() {
        ai = new AlgorithmInfo("RWSi", "Random Walk Simple", ""); // add algorithm name
        au = new Author("Matej", "matej.crepinsek at um.si"); // add author information
    }

    @Override
    public DoubleSolution execute(Task task) throws StopCriterionException { // method which executes the algorithm
        // the task object holds information about the stopping criterion
        // and information about the problem (number of dimensions, number of constraints, upper and lower bounds...)
        DoubleSolution newSolution;
        best = task.getRandomEvaluatedSolution();  // generate new random solution (number of evaluations is incremented automatically)
        // to evaluate a custom solution or an array use task.eval(mySolution)
        while (!task.isStopCriterion()) { // run until the stopping criterion is not reached

            newSolution = task.getRandomEvaluatedSolution();
            if (task.isFirstBetter(newSolution, best)) { // use method isFirstBetter to check which solution is better (it checks constraints and considers the type of the problem (minimization or maximization))
                best = newSolution;
            }
            task.incrementNumberOfIterations(); // increase the number of generations for each iteration of the main loop
        }
        return best; // return the best solution found
    }

    @Override
    public void resetToDefaultsBeforeNewRun() {}
}

Executing a single Task:

import org.um.feri.ears.algorithms.Algorithm;
import org.um.feri.ears.algorithms.so.de.DEAlgorithm;
import org.um.feri.ears.problems.*;
import org.um.feri.ears.problems.unconstrained.Sphere;
import org.um.feri.ears.util.Util;

public class SOSingleRun {

    public static void main(String[] args) {
        Util.rnd.setSeed(System.currentTimeMillis()); // set a new seed for the random generator for each run

        Problem problem = new Sphere(5); // problem Sphere with five dimensions

        Task sphere = new Task(problem, StopCriterion.EVALUATIONS, 10000, 0, 0); // set the stopping criterion to max 10000 evaluations

        Algorithm alg = new DEAlgorithm(DEAlgorithm.Strategy.JDE_RAND_1_BIN);
        DoubleSolution best;
        try {
            best = alg.execute(sphere);
            System.out.println("Best found solution :" + best); // print the best solution found after 10000 evaluations
        } catch (StopCriterionException e) {
            e.printStackTrace();
        }
    }
}

To perform a tournament you need more than one algorithm (player) and more than one task (problem) in the benchmark:

import org.um.feri.ears.algorithms.Algorithm;
import org.um.feri.ears.algorithms.so.abc.ABC;
import org.um.feri.ears.algorithms.so.gwo.GWO;
import org.um.feri.ears.algorithms.so.jade.JADE;
import org.um.feri.ears.algorithms.so.random.RandomWalkAlgorithm;
import org.um.feri.ears.algorithms.so.tlbo.TLBOAlgorithm;
import org.um.feri.ears.benchmark.Benchmark;
import org.um.feri.ears.benchmark.RPUOed30Benchmark;
import org.um.feri.ears.util.Util;

import java.util.ArrayList;

public class SOBenchmarkExample {

    public static void main(String[] args) {
        Util.rnd.setSeed(System.currentTimeMillis()); //set the seed of the random generator
        Benchmark.printInfo = false; //prints info about the benchmark execution
        //add algorithms to a list
        ArrayList<Algorithm> algorithms = new ArrayList<Algorithm>();
        algorithms.add(new ABC());
        algorithms.add(new GWO());
        algorithms.add(new TLBOAlgorithm());
        algorithms.add(new RandomWalkAlgorithm());
        algorithms.add(new JADE());

        RPUOed30Benchmark rpuoed30 = new RPUOed30Benchmark(); // benchmark with prepared tasks and settings

        rpuoed30.addAlgorithms(algorithms);  // register the algorithms in the benchmark

        rpuoed30.run(10); //start the tournament with 10 runs/repetitions
    }
}

Publications

N. Veček, M. Mernik, and M. Črepinšek. "A chess rating system for evolutionary algorithms: A new method for the comparison and ranking of evolutionary algorithms." Information Sciences 277 (2014): 656-679. http://www.sciencedirect.com/science/article/pii/S002002551400276X

N. Veček, M. Črepinšek, M. Mernik, D. Hrnčič. "A comparison between different chess rating systems for ranking evolutionary algorithms." 2014 Federated Conference on Computer Science and Information Systems. IEEE, 2014. https://ieeexplore.ieee.org/abstract/document/6933058

N. Veček, M. Mernik, B. Filipič, and M. Črepinšek. "Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms." Information Sciences 372 (2016): 446-469. https://www.sciencedirect.com/science/article/pii/S0020025516306430

N. Veček, M. Črepinšek, and M. Mernik. "On the influence of the number of algorithms, problems, and independent runs in the comparison of evolutionary algorithms." Applied Soft Computing 54 (2017): 23-45. https://www.sciencedirect.com/science/article/pii/S0020025516306430

N. Veček, S. H. Liu, M. Črepinšek, and M. Mernik. "On the importance of the artificial bee colony control parameter ‘limit’." Information Technology And Control 46.4 (2017): 566-604. http://www.itc.ktu.lt/index.php/ITC/article/view/18215

M. Ravber, M. Mernik, and M. Črepinšek. "The impact of quality indicators on the rating of multi-objective evolutionary algorithms." Applied Soft Computing 55 (2017): 265-275. https://www.sciencedirect.com/science/article/pii/S1568494617300534

M. Ravber, M. Mernik, and M. Črepinšek. "Ranking multi-objective evolutionary algorithms using a chess rating system with quality indicator ensemble." 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017. https://ieeexplore.ieee.org/abstract/document/7969481

M. Ravber, M. Črepinšek, M. Mernik, and T. Kosar. "Tuning Multi-Objective Optimization Algorithms for the Integration and Testing Order Problem." International Conference on Bioinspired Methods and Their Applications. Springer, Cham, 2018. https://link.springer.com/chapter/10.1007/978-3-319-91641-5_20

M. Črepinšek, M. Ravber, M. Mernik, and T. Kosar. "Tuning Multi-Objective Evolutionary Algorithms on Different Sized Problem Sets." Mathematics, 7.9 (2019): 824. https://www.mdpi.com/2227-7390/7/9/824

M. Črepinšek, S. H. Liu, M. Mernik, and M. Ravber. "Long term memory assistance for evolutionary algorithms." Mathematics, 7(11) (2019): 1129. https://www.mdpi.com/2227-7390/7/11/1129

M. Ravber, Ž. Kovačević, M. Črepinšek, and M. Mernik. "Inferring Absolutely Non-Circular Attribute Grammars with a Memetic Algorithm." Applied Soft Computing 100 (2021), 106956. https://www.sciencedirect.com/science/article/abs/pii/S1568494620308942

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0041 COMPUTER SYSTEMS, METHODOLOGIES, AND INTELLIGENT SERVICES) http://p2-0041.feri.um.si/en/

About

EARS is a free and open-source Java-based framework for ranking, developing, and experimenting with single- and multi-objective evolutionary algorithms

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 100.0%