Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ptnn4both datatypes and alignment tests #1827

Merged
merged 14 commits into from
Jul 11, 2024
19 changes: 19 additions & 0 deletions examples/benchmarks/GeneralPtNN/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@


# Introduction

What is GeneralPtNN
- Fix previous design that fail to support both Time-series and tabular data
- Now you can just replace the Pytorch model structure to run a NN model.

We provide an example to demonstrate the effectiveness of the current design.
- `workflow_config_gru.yaml` align with previous results [GRU(Kyunghyun Cho, et al.)](../README.md#Alpha158-dataset)
- `workflow_config_gru2mlp.yaml` to demonstrate we can convert config from time-series to tabular data with minimal changes
- You only have to change the net & dataset class to make the conversion.
- `workflow_config_mlp.yaml` achieved similar functionality with [MLP](../README.md#Alpha158-dataset)

# TODO

- We will align existing models to current design.

- The result of `workflow_config_mlp.yaml` is different with the result of [MLP](../README.md#Alpha158-dataset) since GeneralPtNN has a different stopping method compared to previous implementations. Specificly, GeneralPtNN controls training according to epoches, whereas previous methods controlled by max_steps.
100 changes: 100 additions & 0 deletions examples/benchmarks/GeneralPtNN/workflow_config_gru.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market csi300
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: FilterCol
kwargs:
fields_group: feature
col_list: ["RESI5", "WVMA5", "RSQR5", "KLEN", "RSQR10", "CORR5", "CORD5", "CORR10",
"ROC60", "RESI10", "VSTD5", "RSQR60", "CORR60", "WVMA60", "STD5",
"RSQR20", "CORD60", "CORD10", "CORR20", "KLOW"
]
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]

port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy
kwargs:
signal: <PRED>
topk: 50
n_drop: 5
backtest:
start_time: 2017-01-01
end_time: 2020-08-01
account: 100000000
benchmark: *benchmark
exchange_kwargs:
limit_threshold: 0.095
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: GeneralPTNN
module_path: qlib.contrib.model.pytorch_general_nn
kwargs:
n_epochs: 200
lr: 2e-4
early_stop: 10
batch_size: 800
metric: loss
loss: mse
n_jobs: 20
GPU: 0
pt_model_uri: "qlib.contrib.model.pytorch_gru_ts.GRUModel"
pt_model_kwargs: {
"d_feat": 20,
"hidden_size": 64,
"num_layers": 2,
"dropout": 0.,
}
dataset:
class: TSDatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha158
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
step_len: 20
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs:
model: <MODEL>
dataset: <DATASET>
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
93 changes: 93 additions & 0 deletions examples/benchmarks/GeneralPtNN/workflow_config_gru2mlp.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market csi300
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: FilterCol
kwargs:
fields_group: feature
col_list: ["RESI5", "WVMA5", "RSQR5", "KLEN", "RSQR10", "CORR5", "CORD5", "CORR10",
"ROC60", "RESI10", "VSTD5", "RSQR60", "CORR60", "WVMA60", "STD5",
"RSQR20", "CORD60", "CORD10", "CORR20", "KLOW"
]
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]

port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy
kwargs:
signal: <PRED>
topk: 50
n_drop: 5
backtest:
start_time: 2017-01-01
end_time: 2020-08-01
account: 100000000
benchmark: *benchmark
exchange_kwargs:
limit_threshold: 0.095
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: GeneralPTNN
module_path: qlib.contrib.model.pytorch_general_nn
kwargs:
lr: 1e-3
n_epochs: 1
batch_size: 800
loss: mse
optimizer: adam
pt_model_uri: "qlib.contrib.model.pytorch_nn.Net"
pt_model_kwargs:
input_dim: 20
layers: [20,]
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha158
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs:
model: <MODEL>
dataset: <DATASET>
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
98 changes: 98 additions & 0 deletions examples/benchmarks/GeneralPtNN/workflow_config_mlp.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market csi300
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors: [
{
"class" : "DropCol",
"kwargs":{"col_list": ["VWAP0"]}
},
{
"class" : "CSZFillna",
"kwargs":{"fields_group": "feature"}
}
]
learn_processors: [
{
"class" : "DropCol",
"kwargs":{"col_list": ["VWAP0"]}
},
{
"class" : "DropnaProcessor",
"kwargs":{"fields_group": "feature"}
},
"DropnaLabel",
{
"class": "CSZScoreNorm",
"kwargs": {"fields_group": "label"}
}
]
process_type: "independent"

port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy
kwargs:
signal: <PRED>
topk: 50
n_drop: 5
backtest:
start_time: 2017-01-01
end_time: 2020-08-01
account: 100000000
benchmark: *benchmark
exchange_kwargs:
limit_threshold: 0.095
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: GeneralPTNN
module_path: qlib.contrib.model.pytorch_general_nn
kwargs:
# FIXME: wrong parameters.
lr: 2e-3
batch_size: 8192
loss: mse
weight_decay: 0.0002
optimizer: adam
pt_model_uri: "qlib.contrib.model.pytorch_nn.Net"
pt_model_kwargs:
input_dim: 157
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha158
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs:
model: <MODEL>
dataset: <DATASET>
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
Loading
Loading