This paper introduces MCTrack, a new 3D multi-object tracking method that achieves state-of-the-art (SOTA) performance across KITTI, nuScenes, and Waymo datasets. Addressing the gap in existing tracking paradigms, which often perform well on specific datasets but lack generalizability, MCTrack offers a unified solution. Additionally, we have standardized the format of perceptual results across various datasets, termed BaseVersion, facilitating researchers in the field of multi-object tracking (MOT) to concentrate on the core algorithmic development without the undue burden of data preprocessing. Finally, recognizing the limitations of current evaluation metrics, we propose a novel set that assesses motion information output, such as velocity and acceleration, crucial for downstream tasks.
- [🔥🔥🔥2024-10-08]. The code has been released.🙌
- 2024-09-24. MCTrack is released on arXiv.
- 2024-09-01. We rank 2nd among all methods on Waymo Dataset for MOT.
- 2024-08-30. We rank 1st among all methods on KITTI Dataset for MOT.
- 2024-08-27. We rank 1st among all methods on nuScenes Dataset for MOT.
Method | Detector | Set | HOTA | MOTA | TP | FP | IDSW |
---|---|---|---|---|---|---|---|
MCTrack | VirConv | test | 80.78 | 89.82 | 32207 | 2185 | 64 |
MCTrack | VirConv | train | 82.60 | 85.61 | 22107 | 1468 | 32 |
Method | Detector | Set | HOTA | MOTA | TP | FP | IDSW |
---|---|---|---|---|---|---|---|
MCTrack | VirConv | test | 82.56 | 91.64 | 32064 | 2328 | 12 |
MCTrack | VirConv | train | 83.88 | 86.61 | 22112 | 1261 | 3 |
Method | Detector | Set | AMOTA | MOTA | TP | FP | IDS |
---|---|---|---|---|---|---|---|
MCTrack | LargeKernel3D | test | 0.763 | 0.634 | 103327 | 19643 | 242 |
MCTrack | CenterPoint | val | 0.740 | 0.640 | 85900 | 13083 | 275 |
Method | Detector | Set | MOTA / L1 | MOTP / L1 | MOTA / L2 | MOTP / L2 |
---|---|---|---|---|---|---|
MCTrack | CTRL | test | 0.7504 | 0.2276 | 0.7344 | 0.2278 |
MCTrack | CTRL | val | 0.7384 | 0.2288 | 0.7155 | 0.2293 |
- First, you need to download the original datasets from Kitti, nuScenes, and Waymo, as well as their corresponding detection results, and organize them in the following directory structure. (Note: If you only want to test on the KITTI dataset, you only need to download the KITTI data.)
- For KITTI
data/ └── kitti/ ├── datasets/ | ├── testing/ | | ├── calib/ | | | └── 0000.txt | | └── pose/ | | └── 0000.txt | └── training/ | ├── calib/ | ├── label_02/ | └── pose/ └── detectors/ ├── casa/ │ ├── testing/ │ │ ├── 0000/ │ │ │ └── 000000.txt │ │ │ └── 000001.txt │ │ └── 0001/ │ └── testing/ └── point_rcnn/
- For nuScenes
data/ └── nuScenes/ ├── datasets/ | ├── maps/ | ├── samples/ | ├── sweeps/ | ├── v1.0-test/ | └── v1.0-trainval/ └── detectors/ ├── centerpoint/ | └── val.json └── largekernel/ └── test.json
- For Waymo
-
To prepare the Waymo data, you first need to follow ImmortalTracker's instructions to extract
ego_info
andts_info
(we will also provide these in the link, so you might be able to skip this step.). -
Follow ImmortalTracker's instructions to convert detection results into to
.npz
files. -
Please note that we have modified the
ego_info
section in immortaltracker, and the updated file is provided inpreprocess/ego_info.py
.
data/ └── Waymo/ ├── datasets/ | ├── testing/ | | ├── ego_info/ | | │ ├── .npz | | │ └── .npz | | └── ts_info/ | | ├── .json | | └── .json | └── validation/ | ├── ego_info/ | └── ts_info/ └── detectors/ └── ctrl/ ├── testing/ │ ├── .npz │ └── .npz └── validation/ ├── .npz └── .npz
-
- For KITTI
- Second, run the following command to generate the BaseVersion data format required for MCTrack. Certainly, if you do not wish to regenerate the data, you can directly download the data we have prepared from Google Drive and Baidu Cloud. Due to copyright issues with the Waymo dataset, we are unable to provide the corresponding converted data.
$ python preprocess/convert2baseversion.py --dataset kitti/nuscenes/waymo
- Eventually, you will get the data format of baseversion in the path
data/base_version/
.data/ └── base_version/ ├── kitti/ │ ├── casa/ │ | ├── test.json │ | └── val.json │ └── virconv/ │ ├── test.json │ └── val.json ├── nuscenes/ | ├── centerpoint/ | │ └── val.json | └── largekernel/ | └── test.json └── waymo/ └── ctrl/ ├── val.json └── test.json
scene-0001/
├── frame_0/
│ ├── cur_sample_token # for nuScenes
│ ├── timestamp # The timestamp of each frame
│ ├── bboxes/ # Detected bbox
│ │ ├── bbox_1/ # Bbox1
│ │ │ ├── detection_score # Detection score
│ │ │ ├── category # Category
│ │ │ ├── global_xyz # Center position of the global bbox
│ │ │ ├── global_orientation # Orientation quaternion
│ │ │ ├── global_yaw # Yaw
│ │ │ ├── lwh # Length, width, and height of the bbox
│ │ │ ├── global_velocity # Velocity of the object in the global coordinate
│ │ │ ├── global_acceleration # Acceleration of the object in the global coordinate
│ │ │ └── bbox_image/ # Information of the bbox in the image coordinate
│ │ │ ├── camera_type # Camera position
│ │ │ └── x1y1x2y2 # Image coordinates
│ │ ├── bbox_2/
│ │ │ ├── detection_score
│ │ │ ├── category
│ │ │ └── ...
│ │ └── ...
│ └── transform_matrix/
│ ├── global2ego # Transformation matrix from global to ego
│ ├── ego2lidar # Transformation matrix from ego to lidar
│ ├── global2lidar # Transformation matrix from global to lidar
│ └── cameras_transform_matrix/ # Camera-related transformation matrix
│ ├── CAM_FRONT/ # Front-view camera
│ │ ├── image_shape # Image shape
│ │ ├── ego2camera # Transformation matrix from ego to camera
│ │ ├── camera2image # Transformation matrix from camera to image
│ │ ├── lidar2camera # Transformation matrix from lidar to camera
│ │ ├── camera_token # for nuScenes
│ │ └── camera_path # for nuScenes
│ ├── CAM_FRONT_RIGHT/
│ │ └── ...
│ └── ...
├── frame_1/
│ └── ...
└── ...
$ conda create -n MCTrack python=3.8
$ conda activate MCTrack
$ pip install -r requirements.txt
- For KITTI and nuScenes, you can run
MCTrack
directly after installing the required packages as mentioned above.
-
Please follow the official tutorial to install waymo_open_dataset package
-
Use the following command to verify if the installation was successful.
$ cd /content/waymo-od/src/ && bazel-bin/waymo_open_dataset/metrics/tools/compute_detection_metrics_main waymo_open_dataset/metrics/tools/fake_predictions.bin waymo_open_dataset/metrics/tools/fake_ground_truths.bin
-
Run directly:
$ python main.py --dataset kitti/nuscenes/waymo -e -p 1
-
For example, if you want to run kitti evaluation:
$ python main.py --dataset kitti -e -p 1
-
If you want to run the tracking evaluation faster, you can use multi-processing:
$ python main.py --dataset kitti -e -p 8
-
The results are saved in the
results
folder. You can modify the evaluation parameters in theconfig/kitti.yaml
file.-e
represents whether to evaluate the results. -
Note: for waymo dataset, you should modify the
waymo_open_dataset package path
to yourWOD path
first$ vim evaluation/static_evaluation/waymo/eval.py
- If you want to submit the test set results online, you need to change
SPLIT:
totest
andDETECTOR:
tovirconv
in theconfig/kitti.yaml
file. Then, rerun the tracking program to generate the0000.txt/0001.txt/.../0028.txt
files. After that, compress that into a.zip
file and submit it to the kitti tracking challenge.
- If you want to submit the test set results online, you need to change
SPLIT:
totest
andDETECTOR:
tolargekernel
in theconfig/nuscenes.yaml
file. Then, rerun the tracking program to generate theresult.json
file. After that, compress theresult.json
into a.zip
file and submit it to the nuScenes tracking challenge.
-
Modify the submission file with your information
$ vim waymo-od/src/waymo_open_dataset/metrics/tools/submission.txtpb
-
Generate the result
$ mkdir test_result $ waymo-od/src/bazel-bin/waymo_open_dataset/metrics/tools/create_submission --input_filenames='results/waymo/testing/bin/pred.bin' --output_filename='test_result/model' --submission_filename='waymo-od/src/waymo_open_dataset/metrics/tools/submission.txtpb' $ tar cvf test_result/my_model.tar test_result/ $ gzip test_result/my_model.tar
-
Submit your result to the waymo tracking challenge.
-
TODO:Currently, we are only conducting motion metric evaluations on the nuScenes dataset.
-
If you are interested in our motion metric evaluation, you first need to convert the tracking result files (
result_for_motion.json
) into a format suitable for motion metric evaluation by running:$ python preprocess/motion_dataset/convert_nuscenes_result_to_pkl.py
-
result_path
represents the path where the tracking program saves the results(result_for_motion.json
),nusc_path
refers to the original path of the nuScenes dataset, andgt_pkl_path
,det_pkl_path
,kalman_cv_pkl_path
,diff_pkl_path
andcurve_pkl_path
represent the data files used for motion metric evaluation. -
Next, run:
$ python evaluation/eval_motion.py
-
You will then obtain the results of the motion metric evaluation. The
config/nuscenes_motion_eval.yaml
file contains the parameters for motion metric evaluation.
-
In the detection part, many thanks to the following open-source projects:
-
In the tracking part, many thanks to the following open-source projects:
If you find this work useful, please consider to cite our paper:
@article{wang2024mctrack,
title={MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving},
author={Wang, Xiyang and Qi, Shouzheng and Zhao, Jieyou and Zhou, Hangning and Zhang, Siyu and Wang, Guoan and Tu, Kai and Guo, Songlin and Zhao, Jianbo and Li, Jian and others},
journal={arXiv preprint arXiv:2409.16149},
year={2024}
}