-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3 from mdouchement/tp-luminance
[master] Luminance Fast Bilateral & Autoselect Sigma values
- Loading branch information
Showing
8 changed files
with
312 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
package luminance | ||
|
||
import ( | ||
"image" | ||
"image/color" | ||
"math" | ||
"sync" | ||
|
||
colorful "github.com/lucasb-eyer/go-colorful" | ||
"gonum.org/v1/gonum/mat" | ||
) | ||
|
||
const ( | ||
maxrange = 65535 | ||
dimension = 3 | ||
// padding space | ||
paddingS = 2 | ||
// padding range (luminance) | ||
paddingR = 2 | ||
) | ||
|
||
// A FastBilateral filter is a non-linear, edge-preserving and noise-reducing | ||
// smoothing filter for images. The intensity value at each pixel in an image is | ||
// replaced by a weighted average of intensity values from nearby pixels. | ||
type FastBilateral struct { | ||
Image image.Image | ||
SigmaRange float64 | ||
SigmaSpace float64 | ||
minmaxOnce sync.Once | ||
min float64 | ||
max float64 | ||
// size: | ||
// 0 -> smallWidth | ||
// 1 -> smallHeight | ||
// 2 -> smallLuminance | ||
size []int | ||
grid *mat.Dense | ||
auto bool | ||
} | ||
|
||
// NewFastBilateralAuto instanciates a new FastBilateral with automatic sigma values. | ||
func NewFastBilateralAuto(m image.Image) *FastBilateral { | ||
f := NewFastBilateral(m, 16, 0.1) | ||
f.auto = true | ||
return f | ||
} | ||
|
||
// NewFastBilateral instanciates a new FastBilateral. | ||
func NewFastBilateral(m image.Image, sigmaSpace, sigmaRange float64) *FastBilateral { | ||
return &FastBilateral{ | ||
Image: m, | ||
SigmaRange: sigmaRange, | ||
SigmaSpace: sigmaSpace, | ||
min: math.Inf(1), | ||
max: math.Inf(-1), | ||
size: make([]int, dimension), | ||
} | ||
} | ||
|
||
// Execute runs the bilateral filter. | ||
func (f *FastBilateral) Execute() { | ||
f.minmaxOnce.Do(f.minmax) | ||
f.downsampling() | ||
f.convolution() | ||
f.normalize() | ||
} | ||
|
||
// ColorModel returns the Image's color model. | ||
func (f *FastBilateral) ColorModel() color.Model { | ||
return color.RGBAModel | ||
} | ||
|
||
// Bounds implements image.Image interface. | ||
func (f *FastBilateral) Bounds() image.Rectangle { | ||
return f.Image.Bounds() | ||
} | ||
|
||
// At computes the interpolation and returns the filtered color at the given coordinates. | ||
func (f *FastBilateral) At(x, y int) color.Color { | ||
r, g, b, a := f.Image.At(x, y).RGBA() | ||
X, Y, Z := colorful.LinearRgbToXyz(f.color(r), f.color(g), f.color(b)) | ||
|
||
// Grid coords | ||
gw := float64(x)/f.SigmaSpace + paddingS // Grid width | ||
gh := float64(y)/f.SigmaSpace + paddingS // Grid height | ||
gc := (Y-f.min)/f.SigmaRange + paddingR // Grid luminance | ||
Y2 := f.trilinearInterpolation(gw, gh, gc) | ||
|
||
delta := Y - Y2 | ||
R, G, B := colorful.XyzToLinearRgb(X-delta, Y2, Z-delta) | ||
return color.RGBA{ | ||
R: uint8(f.clamp(0, 255, int(R*255))), | ||
G: uint8(f.clamp(0, 255, int(G*255))), | ||
B: uint8(f.clamp(0, 255, int(B*255))), | ||
A: uint8(a), | ||
} | ||
} | ||
|
||
// ResultImage computes the interpolation and returns the filtered image. | ||
func (f *FastBilateral) ResultImage() image.Image { | ||
d := f.Image.Bounds() | ||
dst := image.NewRGBA(d) | ||
for x := 0; x < d.Dx(); x++ { | ||
for y := 0; y < d.Dy(); y++ { | ||
dst.Set(x, y, f.At(x, y)) | ||
} | ||
} | ||
return dst | ||
} | ||
|
||
func (f *FastBilateral) minmax() { | ||
d := f.Image.Bounds() | ||
for y := 0; y < d.Dy(); y++ { | ||
for x := 0; x < d.Dx(); x++ { | ||
r, g, b, _ := f.Image.At(x, y).RGBA() | ||
_, Y, _ := colorful.LinearRgbToXyz(f.color(r), f.color(g), f.color(b)) | ||
f.min = math.Min(f.min, Y) | ||
f.max = math.Max(f.max, Y) | ||
} | ||
} | ||
|
||
if f.auto { | ||
f.SigmaRange = (f.max - f.min) * 0.1 | ||
} | ||
|
||
f.size[0] = int(float64(d.Dx()-1)/f.SigmaSpace) + 1 + 2*paddingS | ||
f.size[1] = int(float64(d.Dy()-1)/f.SigmaSpace) + 1 + 2*paddingS | ||
f.size[2] = int((f.max-f.min)/f.SigmaRange) + 1 + 2*paddingR | ||
|
||
// fmt.Println("ssp:", f.SigmaSpace, " - sra:", f.SigmaRange) | ||
// fmt.Println("min:", f.min, "- max:", f.max) | ||
// fmt.Println("size:", f.mul(f.size...), f.size) | ||
} | ||
|
||
func (f *FastBilateral) downsampling() { | ||
d := f.Image.Bounds() | ||
offset := make([]int, dimension) | ||
|
||
size := f.mul(f.size...) | ||
dim := dimension - 1 // # 1 luminance and 1 threshold (edge weight) | ||
f.grid = mat.NewDense(size, dim, make([]float64, dim*size)) | ||
|
||
for x := 0; x < d.Dx(); x++ { | ||
offset[0] = int(float64(x)/f.SigmaSpace+0.5) + paddingS | ||
|
||
for y := 0; y < d.Dy(); y++ { | ||
offset[1] = int(float64(y)/f.SigmaSpace+0.5) + paddingS | ||
|
||
r, g, b, _ := f.Image.At(x, y).RGBA() | ||
_, Y, _ := colorful.LinearRgbToXyz(f.color(r), f.color(g), f.color(b)) | ||
|
||
offset[2] = int((Y-f.min)/f.SigmaRange+0.5) + paddingR | ||
|
||
i := f.offset(offset...) | ||
v := f.grid.RawRowView(i) | ||
v[0] += Y // luminance | ||
v[1]++ // threshold | ||
f.grid.SetRow(i, v) | ||
} | ||
} | ||
} | ||
|
||
func (f *FastBilateral) convolution() { | ||
size := f.mul(f.size...) | ||
dim := dimension - 1 // # luminance and 1 threshold (edge weight) | ||
buffer := mat.NewDense(size, dim, make([]float64, dim*size)) | ||
|
||
for dim := 0; dim < dimension; dim++ { // x, y, and luminance | ||
off := make([]int, dimension) | ||
off[dim] = 1 // Wanted dimension offset | ||
|
||
for n := 0; n < 2; n++ { // itterations (pass?) | ||
f.grid, buffer = buffer, f.grid | ||
|
||
for x := 1; x < f.size[0]-1; x++ { | ||
for y := 1; y < f.size[1]-1; y++ { | ||
|
||
for z := 1; z < f.size[2]-1; z++ { | ||
vg := f.grid.RowView(f.offset(x, y, z)).(*mat.VecDense) | ||
prev := buffer.RowView(f.offset(x-off[0], y-off[1], z-off[2])).(*mat.VecDense) | ||
curr := buffer.RowView(f.offset(x, y, z)).(*mat.VecDense) | ||
next := buffer.RowView(f.offset(x+off[0], y+off[1], z+off[2])).(*mat.VecDense) | ||
|
||
// (prev + 2.0 * curr + next) / 4.0 | ||
vg.AddVec(prev, next) | ||
vg.AddScaledVec(vg, 2, curr) | ||
vg.ScaleVec(0.25, vg) | ||
} | ||
} | ||
} | ||
} | ||
} | ||
return | ||
} | ||
|
||
func (f *FastBilateral) normalize() { | ||
r, _ := f.grid.Dims() | ||
for i := 0; i < r; i++ { | ||
if threshold := f.grid.At(i, 1); threshold != 0 { | ||
f.grid.Set(i, 0, f.grid.At(i, 0)/threshold) | ||
} | ||
} | ||
} | ||
|
||
func (f *FastBilateral) trilinearInterpolation(gx, gy, gz float64) float64 { | ||
width := f.size[0] | ||
height := f.size[1] | ||
depth := f.size[2] | ||
|
||
// Index | ||
x := f.clamp(0, width-1, int(gx)) | ||
xx := f.clamp(0, width-1, x+1) | ||
y := f.clamp(0, height-1, int(gy)) | ||
yy := f.clamp(0, height-1, y+1) | ||
z := f.clamp(0, depth-1, int(gz)) | ||
zz := f.clamp(0, depth-1, z+1) | ||
|
||
// Alpha | ||
xa := gx - float64(x) | ||
ya := gy - float64(y) | ||
za := gz - float64(z) | ||
|
||
// Interpolation | ||
return (1.0-ya)*(1.0-xa)*(1.0-za)*f.grid.At(f.offset(x, y, z), 0) + | ||
(1.0-ya)*xa*(1.0-za)*f.grid.At(f.offset(xx, y, z), 0) + | ||
ya*(1.0-xa)*(1.0-za)*f.grid.At(f.offset(x, yy, z), 0) + | ||
ya*xa*(1.0-za)*f.grid.At(f.offset(xx, yy, z), 0) + | ||
(1.0-ya)*(1.0-xa)*za*f.grid.At(f.offset(x, y, zz), 0) + | ||
(1.0-ya)*xa*za*f.grid.At(f.offset(xx, y, zz), 0) + | ||
ya*(1.0-xa)*za*f.grid.At(f.offset(x, yy, zz), 0) + | ||
ya*xa*za*f.grid.At(f.offset(xx, yy, zz), 0) | ||
} | ||
|
||
func (f *FastBilateral) clamp(min, max, v int) int { | ||
if v < min { | ||
v = 0 | ||
} | ||
if v > max { | ||
v = max | ||
} | ||
return v | ||
} | ||
|
||
func (f *FastBilateral) mul(size ...int) (n int) { | ||
n = 1 | ||
for _, v := range size { | ||
n *= v | ||
} | ||
return | ||
} | ||
|
||
// slice[x + WIDTH*y + WIDTH*HEIGHT*z)] | ||
func (f *FastBilateral) offset(size ...int) (n int) { | ||
n = size[0] // x | ||
for i, v := range size[1:] { | ||
n += v * f.mul(f.size[0:i+1]...) // y, z | ||
} | ||
return | ||
} | ||
|
||
func (f *FastBilateral) color(v uint32) float64 { | ||
return float64(v) / maxrange | ||
} |