-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
1 addition
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"metadata":{"language_info":{"name":"gdl","codemirror_mode":"idl","mimetype":"text/x-idl","file_extension":".pro"},"kernelspec":{"name":"gdl","display_name":"GDL","language":"GDL"}},"nbformat_minor":5,"nbformat":4,"cells":[{"cell_type":"markdown","source":"**How to Use**\n\nFirst, you need to define your function. For example: ","metadata":{},"id":"477eeace-67f9-429a-af3b-92d02a8e9f87"},{"cell_type":"code","source":"function myfunc1, input\n result1 = total(input)\n result2 = input[1]^input[0]\n return, [result1, result2]\nend","metadata":{"trusted":true},"execution_count":1,"outputs":[{"name":"stdout","text":"","output_type":"stream"}],"id":"59cc2aaa-3d83-4590-9b52-a86d46c90479"},{"cell_type":"markdown","source":"Then, specify the upper and lower uncertainties of the prior parameters:","metadata":{},"id":"3e89d99d-da50-4399-a836-79ec4b623188"},{"cell_type":"code","source":"input=[1. , 2.]\ninput_err=[0.2, 0.5]\ninput_err_p=input_err\ninput_err_m=-input_err\noutput=myfunc1(input)\ntemp=size(output,/DIMENSIONS)\noutput_num=temp[0]","metadata":{"trusted":true},"execution_count":2,"outputs":[{"name":"stdout","text":"","output_type":"stream"}],"id":"d259476e-89f3-46dc-aeb4-c4cf140dbe6e"},{"cell_type":"markdown","source":"Choose the appropriate uncertainty distribution. For example, for a uniform distribution, use_gaussian=0, and for a Gaussian distribution, use_gaussian=1. Then, specify the number of walkers and the number of iterations, e.g. walk_num=30 and iteration_num=100. ou can then create the MCMC sample and propagate the uncertainties of the input parameters into your defined functions as follows::","metadata":{},"id":"61ada492-3acf-4b46-b219-95d95a701acb"},{"cell_type":"code","source":"use_gaussian=0 ; uniform distribution from min value to max value\nwalk_num=30 ; number of walkers\niteration_num=100 ; number of samplers\nmcmc_sim=emcee_hammer('myfunc1', input, input_err_m, input_err_p, $\n output, walk_num, iteration_num, $\n use_gaussian, print_progress=1)","metadata":{"trusted":true},"execution_count":3,"outputs":[{"name":"stdout","text":"Progress (%): 0 10 20 30 40 50 60 70 80 90 100\n","output_type":"stream"}],"id":"d09d7d8b-1b85-484b-9684-71b172ef3008"},{"cell_type":"raw","source":"To determine the upper and lower errors of the function outputs, you need to run with the chosen appropriate confidence level. For example, a 1.645-sigma standard deviation can be specified with clevel=0.90. For a 1-sigma standard deviation, we have clevel=0.682:","metadata":{},"id":"0083c273-bc77-4101-a78a-190d44aedbb4"},{"cell_type":"code","source":"clevel=0.68268949 ; 1-sigma\noutput_error=emcee_find_errors(output, mcmc_sim, clevel)","metadata":{"trusted":true},"execution_count":4,"outputs":[{"name":"stdout","text":"","output_type":"stream"}],"id":"e5b94480-d0c7-43a5-b481-9953a28ca717"},{"cell_type":"markdown","source":"To plot the histograms, you should set do_plot=1. To print the results:","metadata":{},"id":"30365e5f-6625-476f-9420-773c6c900e9d"},{"cell_type":"code","source":"for i=0, output_num-1 do begin\n print, output[i], transpose(output_error[i,*])\nendfor","metadata":{"trusted":true},"execution_count":5,"outputs":[{"name":"stdout","text":" 3.00000 -0.29439239 0.41795791\n 2.00000 -0.32437726 0.47199511\n","output_type":"stream"}],"id":"06e49385-a910-4536-8c63-66d47fca5587"},{"cell_type":"markdown","source":"Now defined a function having two arguments:","metadata":{},"id":"986d2c3e-4e08-476f-9080-385c1c40f7fc"},{"cell_type":"code","source":"function myfunc2, input, FUNCTARGS=fcnargs\n result1 = fcnargs.scale1*total(input)\n result2 = fcnargs.scale2*(input[1]^input[0])\n return, [result1, result2]\nend\n\ninput=[1. , 2.]\ninput_err=[0.2, 0.5]\ninput_err_p=input_err\ninput_err_m=-input_err\nscale1=2.\nscale2=3.\nfcnargs = {scale1:scale1, scale2:scale2}\noutput=myfunc2(input, FUNCTARGS=fcnargs)\ntemp=size(output,/DIMENSIONS)\noutput_num=temp[0]","metadata":{"trusted":true},"execution_count":6,"outputs":[{"name":"stdout","text":"","output_type":"stream"}],"id":"aa6d93c3-63ee-42a9-baf2-3cc1101c91c3"},{"cell_type":"code","source":"use_gaussian=0 ; uniform distribution from min value to max value\nwalk_num=30 ; number of walkers\niteration_num=100 ; number of samplers\nmcmc_sim=emcee_hammer('myfunc1', input, input_err_m, input_err_p, $\n output, walk_num, iteration_num, $\n use_gaussian, print_progress=1, FUNCTARGS=fcnargs)","metadata":{"trusted":true},"execution_count":7,"outputs":[{"name":"stdout","text":"Progress (%): 0 10 20 30 40 50 60 70 80 90 100\n","output_type":"stream"}],"id":"baabcc7d-d886-42fa-a9a4-6eeda3179d3b"},{"cell_type":"code","source":"output_error=emcee_find_errors(output, mcmc_sim, clevel)","metadata":{"trusted":true},"execution_count":8,"outputs":[{"name":"stdout","text":"","output_type":"stream"}],"id":"e0fe1e2f-b4e0-4b65-9cac-7a76e9726548"},{"cell_type":"code","source":"for i=0, output_num-1 do print, output[i], transpose(output_error[i,*])","metadata":{"trusted":true},"execution_count":9,"outputs":[{"name":"stdout","text":" 6.00000 -3.3429190 -2.6642226\n 6.00000 -4.3686684 -3.7064721\n","output_type":"stream"}],"id":"b4c20309-b795-4651-9b13-40f7143563b1"},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[],"id":"c056400f-cc98-4f9a-a410-52027c7b45ff"}]} |